Chapter_7

# Chapter_7 - VII 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17...

This preview shows pages 1–7. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: VII 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 X X X X 2 X X X X X X X X X X X X 3 X X X X X X X 4 X X X X X X X X X X 5 X X X X X X 6 X X X X X X X 7 X X X 8 X 1 VII.1.1 Evaluate the following residues. (a) Res & 1 z 2 +4 ; 2 i ¡ (d) Res & sin z z 2 ; ¡ (g) Res h z Log z ; 1 i (b) Res & 1 z 2 +4 ; & 2 i ¡ (e) Res & cos z z 2 ; ¡ (h) Res & e z z 5 ; ¡ (c) Res & 1 z 5 & 1 ; 1 ¡ (f) Res [cot z; 0] (i) Res & z n +1 z n & 1 ; w k ¡ Solution a) By rule 4, Res ¢ 1 z 2 + 4 ; 2 i £ = 1 2 z ¤ ¤ ¤ ¤ z =2 i = 1 4 i = & i 4 : b) By rule 4, Res ¢ 1 z 2 + 4 ; & 2 i £ = 1 2 z ¤ ¤ ¤ ¤ z = & 2 i = & 1 4 i = i 4 : c) By rule 4, Res ¢ 1 z 5 & 1 ; 1 £ = 1 5 z 4 ¤ ¤ ¤ ¤ z =1 = 1 5 : d) By rule 1, Res ¢ sin z z 2 ; £ = lim z ! sin z z = 1 : e) By rule 2, Res h cos z z 2 ; i = lim z ! d dz cos z = & sin z j z =0 = 0 : f) By rule 3, Res [cot z; 0] = Res h cos z sin z ; i = cos z cos z ¤ ¤ ¤ z =0 = 1 : 2 g) By rule 3, Res & z Log z ; 1 ¡ = z 1 =z ¢ ¢ ¢ ¢ z =1 = 1 : h) By Laurent expansion e z z 5 = 1 + z 1! + z 2 2! + z 3 3! + z 4 4! + o ( z 5 ) z 5 = 1 z 5 + 1 1! z 4 + 1 2! z 3 + 1 3! z 2 + 1 4! z + o (1) ; hence Res & e z z 5 ; ¡ = 1 4! = 1 24 : i) We have poles of the form w k = e 2 &ik=n , where k = 0 ; 1 ; 2 ; : : : n & 1 , remark that w n k = 1 , by rule 3, Res & z n + 1 z n & 1 ; w k ¡ = z n + 1 nz n & 1 ¢ ¢ ¢ ¢ z = w k = w n k + 1 nw n & 1 k = 2 nw n & 1 k = 2 w k n = 2 e 2 &ik=n n : 3 VII.1.2 Calculate the residue at each singularity in the complex plane of the following functions. (a) e 1 =z (b) tan z (c) z ( z 2 +1) 2 (d) 1 z 2 + z Solution (a) The function e 1 =z has a singularity at z = 0 , by Laurent expansion e 1 =z = 1 + 1 z + 1 2! z 2 + : : : : Thus by de&nition Res & e 1 =z ; ¡ = 1 : (b) The function tan z = sin z cos z has isolated singularities at z = & 2 + &n , &1 < n < 1 , they are simple poles. By rule 3, Res [tan z; &= 2 + n& ] = Res ¢ sin z cos z ; &= 2 + n& £ = sin z & sin z ¤ ¤ ¤ ¤ z = &= 2+ n& = & 1 : (c) The function z ( z 2 +1) 2 has isolated singularities at z = ¡ i , they are double poles. By rule 2, Res ¢ z ( z 2 + 1) 2 ; i £ = d dz z ( z + i ) 2 ¤ ¤ ¤ ¤ z = i = ( z + i ) 2 & 2 z ( z + i ) ( z + i ) 4 ¤ ¤ ¤ ¤ ¤ z = i = 0 ; Res ¢ z ( z 2 + 1) 2 ; & i £ = d dz z ( z & i ) 2 ¤ ¤ ¤ ¤ z = & i = ( z & i ) 2 & 2 z ( z & i ) ( z & i ) 4 ¤ ¤ ¤ ¤ ¤ z = & i = 0 : (d) 4 The function 1 z ( z +1) has isolated singularities at z = 0 and z = & 1 they are simple poles. By rule 1, Res & 1 z ( z + 1) ; ¡ = lim z ! 1 z + 1 = 1 z + 1 ¢ ¢ ¢ ¢ z =0 = 1 ; Res & 1 z ( z + 1) ; & 1 ¡ = lim z !& 1 1 z = 1 z ¢ ¢ ¢ ¢ z = & 1 = & 1 : 5 VII.1.3 Evaluate the following integrals using residue theorem....
View Full Document

## This note was uploaded on 11/13/2010 for the course MATH 132 taught by Professor Grossman during the Spring '08 term at UCLA.

### Page1 / 184

Chapter_7 - VII 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online