08 - CHAPTER 8 Integration Techniques LHpitals Rule and Improper Integrals Section 8.1 Section 8.2 Section 8.3 Section 8.4 Section 8.5 Section 8.6

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
CHAPTER 8 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals Section 8.1 Basic Integration Rules . . . . . . . . . . . . . . . . . . . . 95 Section 8.2 Integration by Parts . . . . . . . . . . . . . . . . . . . . . 106 Section 8.3 Trigonometric Integrals . . . . . . . . . . . . . . . . . . . 128 Section 8.4 Trigonometric Substitution . . . . . . . . . . . . . . . . . 141 Section 8.5 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . 161 Section 8.6 Integration by Tables and Other Integration Techniques . . 173 Section 8.7 Indeterminate Forms and L’Hôpital’s Rule . . . . . . . . . 184 Section 8.8 Improper Integrals . . . . . . . . . . . . . . . . . . . . . . 199 Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
95 CHAPTER 8 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals Section 8.1 Basic Integration Rules 2. (a) (b) (c) (d) matches (a). E x x 2 1 1 dx d dx f ln s x 2 1 1 d 1 C g 5 2 x x 2 1 1 d dx f arctan x 1 C g 5 1 1 1 x 2 5 2 s 1 2 3 x 2 d s x 2 1 1 d 3 d dx 3 2 x s x 2 1 1 d 2 1 C 4 5 s x 2 1 1 d 2 s 2 d 2 s 2 x ds 2 ds x 2 1 1 ds 2 x d s x 2 1 1 d 4 d dx f ln ! x 2 1 1 1 C g 5 1 2 1 2 x x 2 1 1 ± 5 x x 2 1 1 1. (a) (b) (c) (d) matches (b). E x ! x 2 1 1 dx d dx f ln s x 2 1 1 d 1 C g 5 2 x x 2 1 1 5 x 2 ! x 2 1 1 d dx 3 1 2 ! x 2 1 1 1 C 4 5 1 2 1 1 2 ± s x 2 1 1 d 2 1 y 2 s 2 x d d dx f ! x 2 1 1 1 C g 5 1 2 s x 2 1 1 d 2 1 y 2 s 2 x d 5 x ! x 2 1 1 5 2 x ! x 2 1 1 d dx f 2 ! x 2 1 1 1 C g 5 2 1 1 2 ± s x 2 1 1 d 2 1 y 2 s 2 x d 3. (a) (b) (c) (d) matches (c). E 1 x 2 1 1 dx d dx f ln s x 2 1 1 d 1 C g 5 2 x x 2 1 1 d dx f arctan x 1 C g 5 1 1 1 x 2 d dx 3 2 x s x 2 1 1 d 2 1 C 4 5 s x 2 1 1 d 2 s 2 d 2 s 2 x ds 2 ds x 2 1 1 ds 2 x d s x 2 1 1 d 4 5 2 s 1 2 3 x 2 d s x 2 1 1 d 3 d dx f ln ! x 2 1 1 1 C g 5 1 2 1 2 x x 2 1 1 ± 5 x x 2 1 1 4. (a) (b) (c) (d) matches (c). E x cos s x 2 1 1 d dx d dx f 2 2 x sin s x 2 1 1 d 1 C g 52 2 x f cos s x 2 1 1 ds 2 x dg 2 2 sin s x 2 1 1 d 2 f 2 x 2 cos s x 2 1 1 d 1 sin s x 2 1 1 dg d dx 3 1 2 sin s x 2 1 1 d 1 C 4 5 1 2 cos s x 2 1 1 ds 2 x d 5 x cos s x 2 1 1 d d dx 3 2 1 2 sin s x 2 1 1 d 1 C 4 1 2 cos s x 2 1 1 ds 2 x d x cos s x 2 1 1 d d dx f 2 x sin s x 2 1 1 d 1 C dg 5 2 x f cos s x 2 1 1 ds 2 x dg 1 2 sin s x 2 1 1 d 5 2 f 2 x 2 cos s x 2 1 1 d 1 sin s x 2 1 1 dg
Background image of page 2
96 Chapter 8 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 5. Use E u n du . u 5 3 x 2 2, du 5 3 dx , n 5 4 E s 3 x 2 2 d 4 dx 6. Use E du u . u 5 t 2 2 t 1 2, du 5 s 2 t 2 1 d dt E 2 t 2 1 t 2 2 t 1 2 dt 7. Use E du u . u 5 1 2 2 ! x , du 52 1 ! x dx E 1 ! x s 1 2 2 ! x d dx 8. Use E du u 2 1 a 2 . u 5 2 t 2 1, du 5 2 dt , a 5 2 E 2 s 2 t 2 1 d 2 1 4 dt 9. Use E du ! a 2 2 u 2 . u 5 t , du 5 dt , a 5 1 E 3 ! 1 2 t 2 dt 10. Use E u n du . u 5 x 2 2 4, du 5 2 x dx , n 1 2 E 2 2 x ! x 2 2 4 dx 11. Use E sin u du . u 5 t 2 , du 5 2 t dt E t sin t 2 dt 12. Use E sec u tan u du . u 5 3 x , du 5 3 dx E sec 3 x tan 3 x dx 13. Use E e u du . u 5 sin x , du 5 cos x dx E s cos x d e sin x dx 14. Use E du u ! u 2 2 a 2 . u 5 x , du 5 dx , a 5 2 E 1 x ! x 2 2 4 dx 15. Let 5 s x 2 4 d 6 1 C E 6 s x 2 4 d 5 dx 5 6 E s x 2 4 d 5 dx 5 6 s x 2 4 d 6 6 1 C u 5 x 2 4, du 5 dx .
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 11/13/2010 for the course MATH MAT 231 taught by Professor Thurber during the Spring '08 term at Thomas Edison State.

Page1 / 138

08 - CHAPTER 8 Integration Techniques LHpitals Rule and Improper Integrals Section 8.1 Section 8.2 Section 8.3 Section 8.4 Section 8.5 Section 8.6

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online