{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

econ2040hw5

# econ2040hw5 - KaitlynClune Econ2040HW5 1 a) redorblue,...

This preview shows pages 1–2. Sign up to view the full content.

Kaitlyn Clune Econ 2040 – HW 5 11/8/10 1) a) In order for the third student to be indifferent between guessing either  “red” or “blue”, the expected value of picking majority red would have to be  equal to the expected value of picking majority blue, based on the previous 2  choices.  By using Baye’s theorem:  Pr[majority red| red, red, blue] = Pr[majority red]x P[R,R,B| majority red]                 Pr[R, R, B] Where:  Pr[R,R,B] = Pr[majority blue] x Pr[R, R, B| majority blue] +    Pr[majority red]x  P[R,R,B| majority red]  = 1/9  Pr[majority red]x P[R,R,B| majority red] = ½ x (2/3)(2/3)(1/3) = ½ x 4/27 Thus: Pr[majority red| red, red, blue]  = (1/2)(4/27) / (1/9) = 2/3 If the total probability is 1, we know that Pr[majority blue| red, red, blue] = 1-(2/3) Thus Pr[majority blue| red, red, blue] = 1/3.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 2

econ2040hw5 - KaitlynClune Econ2040HW5 1 a) redorblue,...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online