This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: MA 16100 Exam III Fall 2008 1. What approximate value do you get for \/ 4.1 if you use the linear approximation at 4? 2. Evaluate cosh(ln 5). A
B
C D. 2.075
E. wpow> . 2
. 2.025
. 2.05 2.1 . 2.4 . 2.5
. 2.6 MA 16100 . Exam III 3. Themaximumvalueofx3—3m+9for —3gms2is 4. The minimum value of x3 — 32; + 9 for —3 S x S 2 is A. 5
B. 7
C. 9
D. 11
E. 13 A. —9
B. —1
C. 3
D. 5
E. 7 Fall 2008 MA 16100 Exam III Fall 2008 5. Given that f (3) = 0 and f’(a:) 2 3 for 0 g a: g 3, the largest f(0) can be is
A. —9
B. —3
C. 0
D. 6 E. Cannot be determined. 6. If f’(:1:)= a:(a: — 1)2(:1: — 2), then f has
A. 3 local minima.
B. 2 local minima and 1 local maximum.
C. 1 local minimum and 2 local maxima.
D. 3 local maxima. E. 1 local maximum and 1 local minimum. MA 16100 Exam III Fall 2008 7. If f’ (m) = 3(a: — 1)2/3 — 11;, the interva1(s) where f is concave down is (are)
A. (—00, 9) only
B. (—00, 1) only
C. (9,00) only
D. (—00, 1) and (9,00)
E. (—00, 9) and (9,00) 8 £010 % =
A. 2/3
B. 3/2
C. 6
D. l
E. 0 MA 16100 ‘ Exam III Fall 2008 9. If f’(:z:) = (a: — 1)(2 — x)(:z: + 3), then the graph of f can look like which one of the
following graphs? 10. The graph of f ’ is given below. Only one of the following is true. Which one?
9 y = f’(w) (I: A. fhasalocalminatm=a
B. f is not differentiable at a: = c.
C. f has an inﬂection point at a: = c. D. f is increasing for all :1: such that a: > c. E. f(c) < 0. MA 16100 Exam III Fall 2008 11. Find the m—coordinate of the point on the line 3x — 23/ = 2 that is closest to the point
(2, 1). 20
15
10
E
8
E
20
T7
10
' I? D. E 12. Suppose at the point (2, —3) on the curve y = f(:1:), the tangent line has slope 4. If
Newton’s method is used to locate a root of the equation f (at) = O and the initial
approximation is $1 = 2, ﬁnd the second approximation m2. A.x2=—1—: 4 B.:1:2=——1—1—
4
C.x2=ﬁ
D'$2=%
E.m2=g MA 16100 Exam III Fall 2008 13. Find the most general antiderivative of the function g(:c) = cos(2:1:) — 3 sin(:z:). A. 2sin(2a:) + écos(3zc) + C B. gsian) + 3 cos(:1:) + C' C. ésian) — 3 cos(a:) + C’ 1
D. —2 sin(2:1:) + E cos(3x) + C' E. ZSin(2:1:) — $003813 + C 14. If f”(a:) = 1:1/3, f’(8) = 10, and f(1) = 0, then f(0) = ...
View
Full Document
 Fall '08
 Gabriel

Click to edit the document details