{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

assignment 5 with solution[1] - degrees with the level...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Assignment #5 1. The position of a particle in given coordinate system is  Where the distances are in meters when t is in seconds. At what time will the particle cross the  y-axis? At what time will it cross the x-axis? Can you find an equation that relates the y- coordinate the x-coordinate and therefore gives the trajectory in the xy-plane?  Where would  the x- and y-axes have to be moved so that at t = 0 s the trajectory passes through the origin? 2. A car and a truck start from a common spot and travel in straight lines at respective speeds of  30 and 40 km/h.  Exactly 1 h later they telephone each other and find that they are separated  by exactly 50 km. At what relative directions did they travel? 3. A place kicker attempts a field goal, giving the ball an initial velocity of 30 m/s at an angle of 32 
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: degrees with the level field. The uprights are 35 m from the point at which the ball is kicked and the horizontal bar is 4.0 m from the ground. (a) At what time after the kick will the ball pass the goal posts? (b) Is the kick successful, and by how many meters does the ball clear or pass beneath the bar? 4. A golfer wants to land a golf ball on the green located 155 m away horizontally but 4.0 m higher. The golfer chooses an eight iron that he knows will result in the ball leaving the tee at an elevation angle of 65 degrees. (a) With what velocity should the ball leave the tee? (b) What is the maximum height of the ball above the green? 1. 2. 3. 4....
View Full Document

{[ snackBarMessage ]}