{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Calc III Ch13 Notes_Part11

# Calc III Ch13 Notes_Part11 - Differentiability In...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Differentiability: In single—variable functions this was easy. . .did the derivative exist at that point? , @M/WW-S- £7 ,. mu m; ’V EX: Where is f (x): x differentiable? 5V Xﬂd I’m/é ‘/ 50 . f d/ngfﬁ’é’cr x—4 /:X'LI)*-)((/__.Zlﬂ—#= 6? M I”??? " (Hf . In multiwariable calculus, this is NOT easy. ﬁx, y). is. differentiable at (a, .b) if A2 can be expressed as A2 =. W ’1. 51‘4" *5-4? . 01:1?me Errors. Where both 51 and 52 —>0 as (Ax,Ay) —> (0, 0). 1/" x o‘y EX: Show that f (x, y) = 4 y2 — x is differentiable everywhere. / M ﬂﬂw,-—--- A Z = ”WE/Mr) — MW : 4044/) 2’ (/WAX.) "' (/y‘zﬂx All}??? “4&5 K _— 4174/ my *‘/4/‘6'3’- .4): 74743 7546’“ “at We 52 = 71x +254 { «*— “"0““ C ”A r r 24 my» We,“ — x +5 4 _ at, 4x 78/ +30 fg/Aydy , “050 fa )* z z 67; fill”, ’zﬂfnf/O /y -X 4—)) (Ahay) Iota: J , 2y \ 5:91" we r. gray +Qx)[email protected])[email protected])@ﬂ «4 r t y if 61 ...
View Full Document

{[ snackBarMessage ]}