Unformatted text preview: Differentiability:
In single—variable functions this was easy. . .did the derivative exist at that point? , @M/WW-S- £7
,. mu m; ’V
EX: Where is f (x): x differentiable? 5V Xfld I’m/é ‘/ 50 . f d/ngffi’é’cr x—4
/:X'LI)*-)((/__.Zlfl—#= 6?
M I”??? " (Hf . In multiwariable calculus, this is NOT easy. fix, y). is. differentiable at (a, .b) if A2 can be expressed as A2 =. W ’1. 51‘4" *5-4? . 01:1?me Errors.
Where both 51 and 52 —>0 as (Ax,Ay) —> (0, 0). 1/" x o‘y EX: Show that f (x, y) = 4 y2 — x is differentiable everywhere. / M flflw,-—---
A Z = ”WE/Mr) — MW
: 4044/) 2’ (/WAX.) "' (/y‘zflx All}??? “4&5 K
_— 4174/ my *‘/4/‘6'3’- .4): 74743 7546’“ “at We 52
= 71x +254 { «*— “"0““
C ”A r r 24 my» We,“
— x +5 4 _
at, 4x 78/ +30 fg/Aydy , “050
fa )* z z 67; fill”, ’zflfnf/O
/y -X 4—)) (Ahay) Iota:
J , 2y \ 5:91" we r. gray +Qx)[email protected])[email protected])@fl
«4 r t y if 61 ...
View
Full Document
- Winter '08
- Peart,J
- Calculus
-
Click to edit the document details