Kin3514_ch9

Kin3514_ch9 - Chapter9 AngularKinematics...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Copyright © 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins  Click to edit Master subtitle style Chapter 9
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Copyright © 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins  Objectives 1. Distinguish between linear, angular, and general motion. 2. Determine relative and absolute angles. 3. Discuss the relationship among the kinematic quantities of angular  distance and displacement, angular velocity, and angular acceleration. 4. Discuss the conventions for the calculation of lower extremity angles. 5. Discuss the relationship between angular and linear motion,  particularly displacement, velocity, and acceleration. 6. Discuss selected research studies that have used an angular 
Background image of page 2
Copyright © 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins  Angular Kinematics Angular motion: all parts of a body move through the same angle  Angular kinematics deals with angular motion. Nearly all human movement involves rotation of body segments.
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Copyright © 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins  Angular Kinematics FIGURE 9-1 A bicycle wheel as an example of rotational motion. Points A, B,  and C undergo the same amount of rotation but different linear displacements,  with C undergoing the greatest linear displacement.
Background image of page 4
Copyright © 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins  Angular Kinematics FIGURE 9-2 A gymnast completing a cartwheel as an example of general  motion. The gymnast simultaneously undergoes both translation and rotation.
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Copyright © 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins  Measurement of Angles Angle FIGURE 9-3 Components of an angle. Note that the lines are usually  segments and the vertex of the angle is the joint center.
Background image of page 6
Copyright © 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins  With machines, the center of rotation is usually fixed. This is not the case with human joint. Measurement of Angles Angle FIGURE 9-4 Instantaneous center of rotation of the knee. .
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Copyright © 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins  An angle is at the intersection of two lines (and planes). Units of measurement Degrees Radians (1 radian = 57.3o) Revolutions (one revolution = 360o) One radian is the angle at the center of a circle described by an  arc equal to the length of the radius. Circumference = 2 r; therefore, there are 2fl  radians in 360o Measurement of Angles Units of Measurement
Background image of page 8
Copyright © 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins  FIGURE 9-5 Units of angular  measurement.  A.
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 11/18/2010 for the course KIN 3514 taught by Professor Lili during the Spring '09 term at LSU.

Page1 / 49

Kin3514_ch9 - Chapter9 AngularKinematics...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online