hw4 - ACM116 - Winter 2008-2009 - Homework #4 Handed out:...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ACM116 - Winter 2008-2009 - Homework #4 Handed out: March 6, 2009, Due: March 18, 2009, in Sheila Shulls office (Firestone 217) by 4pm Please write down your solutions clearly and concisely, put the problems in order, and box your answers. For questions regarding each problem, please contact the TA whose name is printed in front of the problem index. To get full credit it is sufficient to solve Problem 1 to 7. Solving Problem 8 is optional and will give you extra points. 1/(Yaniv) Suppose X N ( , ). Let A be an n n matrix with the property AA T = . Prove that the random vector Z = A- 1 ( X- ) is a standard normal random vector. 2/(Yaniv) Suppose X N (0 , ), with = 4 1 1 4 (a) What is the law of X 1 + X 2 ? (b) Write X as the sum of two independent Gaussian vectors. (c) What is E [ X 1- X 2 | X 1 + X 2 ]? (d) What is the Law of ( X 1- X 2 | X 1 + X 2 )? 3/(Yaniv) Suppose X is a signal of interest, that has modeled as a Gaussian vector: X N (0 , ) with = 3 1 1 1 3 1 1 1 3 Suppose the signal is corrupted with noise, so you see Y = X + Z , where Z is a standard normal noise vector ( Z N (0 ,I )). If, in one instance, Y = (3 , 1 , 2), what is your best approximation of X ? Hint: Use the Wiener filter. 1 4/(Stephen) Let B be a Brownian Motion. Consider the stochastic process X t defined by for t T with T = [0 , 1] by X t = B t- tB 1 a Show that ( X t ) t T is a centered Gaussian Process. b Compute its covariance matrix [ s,t ] = E [ X s X t ]. c Is the law of stochastic process X t equal to the law of a Brownian Motion on [0 , 1]? d Show that ( X t ) t T is independent from B 1 . e Let be a bounded measurable function from R n onto R + . Write F [ x ] := E [ ( X t 1 + t 1 x,...,X t n + t n x )] What is the value of E [ ( X t 1 + t 1 B 1 ,...,X t n + t n B 1 ) | B 1 ]?...
View Full Document

Page1 / 6

hw4 - ACM116 - Winter 2008-2009 - Homework #4 Handed out:...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online