This preview shows page 1. Sign up to view the full content.
Unformatted text preview: 2. MWG, 6.C.8. Prove this in two ways: (a) as a corollary of Pratts Theorem; and (b) directly. (Hint for (b): write R xu 00 dF ( x ) = R ( xu )( u 00 /u ) dF ( x ).) 3. MWG, 6.C.9. Add a part (e): For t = 0 , 1, let y t be a nondegenerate, zeromean random variable with cdf F t . Let F 1 be strictly riskier than F : the expectation of any strictly concave function on the support of F is lower under F 1 than under F . If v 000 > 0, show that E [ v ( x + y 1 )] > E [ v ( x + y ]. Hence any increase in risk leads to more precautionary saving. 4. MWG, 6.E.2. (Suggestion: prove this two ways, using the rst order conditions and using the SSCP. Either of course is ne on its own, but notice that the argument appealing to the SSCP is shorter and eortlessly deals with corner solutions.) 1...
View Full
Document
 Spring '10
 schlee
 Microeconomics

Click to edit the document details