LECTURE 8 (full)

# LECTURE 8 (full) - CTURE 8 LECTURE 8 OPERATIONAL...

This preview shows pages 1–9. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: CTURE 8 LECTURE 8. OPERATIONAL AMPLIFIERS (I) structor: Prof. kyu ark Instructor: Prof. Inkyu Park Department of Mechanical Engineering Korea Advanced Institute of Science and Technology (KAIST) MAE307 Applied Electronics © Inkyu Park, 2010 Review of Lecture 6-7 MAE307 Applied Electronics © Inkyu Park, 2010 Sinusoidal Frequency Response Electrical System Input Signal Output Signal omponent #1 Component #1 Component #2 Component #1 Component #2 Component #3 Component #4 Component #3 Component #4 • Each frequency component of input signal has different effect on that of output signal (amplitude amplification, phase shift) MAE307 Applied Electronics © Inkyu Park, 2010 Sinusoidal Frequency Response • We use the general formula to describe the frequency response (transfer fn). ) (  j V L ) ( ) (   j V j H S V  • This phasor form can be rewritten as ) ( ) ( ) (    j V j H j V S V L     S V S V O H j S V j S H j V j L e V H e V e H e V          • Thus, the amplitude and phase of the output signal are S V L V H V   S V L H      Amplitude of transfer fn. Phase of transfer fn. MAE307 Applied Electronics © Inkyu Park, 2010 Bode Plots • Plots of amplitude and phase of the frequency response (transfer function) vs. frequency of the input signal. – amplitude: in dB i dB i dB A A A A j H 10 log 20 ) (    – phase: in degree (or radian) • For example, let’s look at the low-pass filter:                 1 2 tan ) / ( 1 / 1 ) ( ) ( ) (          K j K j V j V j H i o   2 10 10 2 10 ) / ( 1 log 10 log 20 log 20 ) (        K K j H dB- Amplitude ) / ( 1   - Phase n 1    MAE307 Applied Electronics © Inkyu Park, 2010 ) / ( tan ) (     j H Bode Plots : Amplitude (for low-pass filter)   2 10 10 2 10 ) / ( 1 log 10 log 20 ) / ( 1 log 20 ) (           K K j H dB For    K j H dB 10 log 20 ) (      dB K K j H dB 3 log 20 2 log 20 log 20 ) ( 10 10 10         ) / ( log 20 log 20 ) ( 10 10      K j H dB MAE307 Applied Electronics © Inkyu Park, 2010 10-2 10-1 10 10 1 10 2 Correct Fig 6.37 Bode Plots : Phase (for low-pass filter) For    ) / ( tan ) ( 1        j H ) (    j H     4 ) (      j H     2 ) (    j H MAE307 Applied Electronics © Inkyu Park, 2010 10-2 10-1 10 10 1 10 2 Correct Fig 6.37 Bode Plots : For high-pass filter                       1 2 tan 2 ) / ( 1 / / 1 / ) ( ) ( ) (               K j jK j V j V j H i o For    ) / ( log 20 log 20 ) ( 10 10     ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 30

LECTURE 8 (full) - CTURE 8 LECTURE 8 OPERATIONAL...

This preview shows document pages 1 - 9. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online