# ADS Homework 4 - Homework 4 = c/ccr> 1 Over Critically...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Homework 4: = c/ccr > 1 Over Critically Damped System Determine the constants (G1 and G2) of the solution v(t). Solution: s 2 + 2s + 2 = 0 s1, 2 = - 2 (2) 2 - 4 2 = - () 2 - 2 = - 2 - 1 2 = 2 - 1 s1, 2 = - : Damping coefficient : Circular frequency of undamped system : Circular frequency of over critically damped system The solution of the differential equation is; v (t ) = G1e s1t + G2 e s2t v(t ) = G1e ( -+ )t + G2 e ( -- ) t = e -t (G1et + G2 e -t ) The initial conditions are; v (t = 0) = v(0) ; v(t = 0) = v(0) v (t = 0) = v(0) = G1 + G2 v (t ) = -e -t (G1et + G2 e -t ) + e -t (G1et - G2 e -t ) (1) v (t = 0) = -(G1 + G2 ) + (G1 - G2 ) v(0) = -v (0) + (G1 - G2 ) G1 - G2 = v(0) + v (0) (2) By using Equations 1 and 2, G1 and G2 can be obtained. G1 = G2 = v(0) + v(0) + v(0) v(0)( + ) + v(0) G1 = 2 v(0) - v(0) - v (0) v(0)( - ) - v(0) G2 = 2 The solution is; v(t ) = G1e ( -+ ) t + G 2 e ( -- ) t = v(0)( + ) + v (0) ( -+ ) t v(0)( - ) - v (0) ( -- )t e + e 2 2 1 v(0)( + ) + v(0) t v(0)( - ) - v(0) -t v(t ) = =e -t (G1et + G2 e -t ) = e -t e + e 2 2 The grafic expression for the free vibration cases are given in Figure 1. Free Vibration Cases 1.50 1.00 0.50 v(t) 0.00 -1 -0.50 -1.00 -1.50 t(s) 1 3 5 7 Undamped v(t) Critically Damped v(t) Under Critically Damped v(t) Over Critically Damped v(t) Figure 1. Free Vibration Cases 2 ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 2

ADS Homework 4 - Homework 4 = c/ccr> 1 Over Critically...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online