This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: husain (aih243) HW09 Gilbert (56215) 1 This printout should have 31 questions. Multiplechoice questions may continue on the next column or page find all choices before answering. 001 10.0 points Rewrite the sum braceleftBig 2+ parenleftBig 1 9 parenrightBig 2 bracerightBig + braceleftBig 4+ parenleftBig 2 9 parenrightBig 2 bracerightBig + . . . + braceleftBig 14+ parenleftBig 7 9 parenrightBig 2 bracerightBig using sigma notation. 1. 9 summationdisplay i = 1 2 braceleftBig i + parenleftBig i 9 parenrightBig 2 bracerightBig 2. 9 summationdisplay i = 1 2 braceleftBig i + parenleftBig 2 i 9 parenrightBig 2 bracerightBig 3. 7 summationdisplay i = 1 braceleftBig 2 i + parenleftBig i 9 parenrightBig 2 bracerightBig correct 4. 7 summationdisplay i = 1 braceleftBig i + parenleftBig 2 i 9 parenrightBig 2 bracerightBig 5. 7 summationdisplay i = 1 2 braceleftBig i + parenleftBig i 9 parenrightBig 2 bracerightBig 6. 9 summationdisplay i = 1 braceleftBig 2 i + parenleftBig i 9 parenrightBig 2 bracerightBig Explanation: The terms are of the form braceleftBig 2 i + parenleftBig i 9 parenrightBig 2 bracerightBig , with i = 1 , 2 , . . . , 7. Consequently, in sigma notation the sum becomes 7 summationdisplay i =1 braceleftBig 2 i + parenleftBig i 9 parenrightBig 2 bracerightBig . 002 10.0 points The graph of a function f on the interval [0 , 10] is shown in 2 4 6 8 10 2 4 6 8 Estimate the area under the graph of f by dividing [0 , 10] into 10 equal subintervals and using right endpoints as sample points. 1. area 50 2. area 52 3. area 51 correct 4. area 49 5. area 53 Explanation: With 10 equal subintervals and right end points as sample points, area braceleftBig f (1) + f (2) + . . . f (10) bracerightBig 1 , since x i = i . Consequently, area 51 , reading off the values of f (1) , f (2) , . . ., f (10) from the graph of f . 003 (part 1 of 3) 10.0 points Below is the graph of a function f . husain (aih243) HW09 Gilbert (56215) 2 1 2 3 1 2 3 2 4 6 8 2 4 6 (i) Estimate the definite integral I = integraldisplay 3 3 f ( x ) dx with six equal subintervals using right end points. 1. I 10 correct 2. I 8 3. I 6 4. I 9 5. I 7 Explanation: Since [ 3 , 3] is subdivided into six equal subintervals, each of these will have length 1 and the six corresponding rectangles are shown as the shaded areas in 1 2 3 1 2 3 2 4 6 8 2 4 6 The heights of the rectangles are right end point sample values of f that can be read off from the graph. Thus, with right endpoints, I 1 4 1 + 3 + 4 + 7 = 10 . 004 (part 2 of 3) 10.0 points (ii) Estimate the definite integral I = integraldisplay 3 3 f ( x ) dx with six equal subintervals using left end points....
View Full
Document
 Spring '06
 McAdam

Click to edit the document details