This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: husain (aih243) HW15 Gilbert (56215) 1 This printout should have 17 questions. Multiplechoice questions may continue on the next column or page find all choices before answering. 001 10.0 points Evaluate the integral I = integraldisplay e 1 x ln x dx . 1. I = 1 4 ( e 1) 2. I = 1 2 ( e 1) 3. I = 1 4 ( e 2 + 1) correct 4. I = 1 2 ( e + 1) 5. I = 1 2 ( e 2 + 1) 6. I = 1 4 ( e 2 1) Explanation: After integration by parts, I = bracketleftBig 1 2 x 2 ln x bracketrightBig e 1 1 2 integraldisplay e 1 x 2 parenleftBig 1 x parenrightBig dx = 1 2 e 2 ln x 1 2 integraldisplay e 1 x dx . Consequently, I = 1 2 e 2 bracketleftBig 1 4 x 2 bracketrightBig e 1 = 1 4 ( e 2 + 1) . 002 10.0 points Evaluate the integral I = integraldisplay 4 e ln x x 2 dx . 1. I = 4 e + 1 2 parenleftBig ln4 + 1 parenrightBig 2. I = 2 e + 1 4 parenleftBig ln4 + 1 parenrightBig 3. I = 4 e 1 2 parenleftBig ln 4 + 1 parenrightBig 4. I = 4 e 1 2 parenleftBig ln 4 1 parenrightBig 5. I = 2 e 1 4 parenleftBig ln 4 1 parenrightBig 6. I = 2 e 1 4 parenleftBig ln 4 + 1 parenrightBig correct Explanation: After integration by parts, I = bracketleftBig 1 x ln x bracketrightBig 4 e + integraldisplay 4 e 1 x 2 dx . Thus I = bracketleftBig 1 x ln x + 1 x bracketrightBig 4 e . Consequently, I = 2 e 1 4 parenleftBig ln4 + 1 parenrightBig . 003 10.0 points Evaluate the definite integral I = integraldisplay 5 te t dt . 1. I = 1 6 e 5 correct 2. I = 1 5 e 5 3. I = 1 + 5 e 6 4. I = 1 + 6 e 5 5. I = 1 + 6 e 6 6. I = 1 5 e 6 Explanation: husain (aih243) HW15 Gilbert (56215) 2 After Integration by Parts, I = bracketleftBig te t bracketrightBig 5 + integraldisplay 5 e t dt = bracketleftBig te t e t bracketrightBig 5 . Consequently, I = 5 e 5 e 5 + 1 = 1 6 e 5 . 004 10.0 points Evaluate the definite integral I = integraldisplay 1 (4 x 2 + 1) e x dx . 1. I = 5 e 9 correct 2. I = 5 e + 9 3. I = 4 e + 9 4. I = 4 e + 7 5. I = 5 e 7 6. I = 4 e 9 Explanation: After integration by parts, I = bracketleftBig (4 x 2 + 1) e x bracketrightBig 1 integraldisplay 1 e x braceleftBig d dx (4 x 2 + 1) bracerightBig dx = bracketleftBig (4 x 2 + 1) e x bracketrightBig 1 8 integraldisplay 1 xe x dx . To evaluate this last integral, we integrate by parts again. For then integraldisplay 1 xe x dx = bracketleftBig xe x bracketrightBig 1 integraldisplay 1 e x dx = bracketleftBig ( x 1) e x bracketrightBig 1 . Thus I = bracketleftBig (4 x 2 + 1) e x 8( x 1) e x bracketrightBig 1 = bracketleftBig (4 x 2 8 x + 9) e x bracketrightBig 1 ....
View Full
Document
 Spring '06
 McAdam

Click to edit the document details