{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

HW11_Solutions - PHYS851 Quantum Mechanics I Fall 2008...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
PHYS851 Quantum Mechanics I, Fall 2008 HOMEWORK ASSIGNMENT 11 1. [20 pts] In order to derive the properties of the angular momentum eigenstate wavefunctions, we need to determine the action of the angular momentum operator in spherical coordinates. Just as we have ( x | P x | ψ ) = i planckover2pi1 d dx ( x | ψ ) , we should find a similar expression for ( rθφ | vector L | ψ ) . From vector L = vector R × vector P and our knowledge of momentum operators, it follows that ( rθφ | vector L | ψ ) = ı planckover2pi1 parenleftbigg vectore x parenleftbigg y d dz z d dy parenrightbigg + vectore y parenleftbigg z d dx x d dz parenrightbigg + vectore z parenleftbigg x d dy y d dx parenrightbiggparenrightbigg ( rθφ | ψ ) . The coordinates are defined via the transformations x = r sin θ cos φ y = r sin θ sin φ z = r cos θ and the inverse transformations r = radicalbig x 2 + y 2 + z 2 θ = arctan( radicalbig x 2 + y 2 z ) φ = arctan( y x ) , while their derivatives can be related via expansions such as d dx = ∂r ∂x ∂r + ∂θ ∂x ∂θ + ∂φ ∂x ∂φ . Using these relations (and similar relations for d/dy and d/dz ) find expressions for ( rθφ | L x | ψ ) , ( rθφ | L y | ψ ) , and ( rθφ | L z | ψ ) , involving only spherical coordinates and their derivatives. This is an alternate approach to the one described in lecture. Answer: x r = x r = sin θ cos φ x θ = z 2 r 2 x z x 2 + y 2 = cos θ cos φ r x φ = x 2 x 2 + y 2 y x 2 = csc θ sin φ r So d dx = sin θ cos φ∂ r + cos θ cos φ r θ csc θ sin φ r φ y r = y r = sin θ sin φ y θ = z 2 r 2 y z x 2 + y 2 = cos θ sin φ r 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
y φ = x 2 x 2 + y 2 1 x = csc θ cos φ r So d dy = sin θ sin φ∂ r + cos θ sin φ r θ + csc θ cos φ r φ z r = z r = cos θ z θ = z 2 r 2 x 2 + y 2 z 2 = sin θ r z φ = 0 So d dz = cos θ∂ r sin θ r θ ( rθφ | L x | ψ ) = i planckover2pi1 ( y d dz z d dy ) ( rθφ | ψ ) So we can say L x = i planckover2pi1 parenleftBig y d dz z d dy parenrightBig L x = i planckover2pi1 ( r sin θ cos θ sin φ∂ r sin 2 θ sin φ∂ θ r sin θ cos θ sin φ∂ r cos 2 θ sin φ∂ θ + cot θ cos φ∂ φ ) Which means ( rθφ | L x | ψ ) = i planckover2pi1 ( sin φ∂ θ cot θ cos φ∂ φ ) ( rθφ | ψ ) Similarly we can say L y = i planckover2pi1 ( z d dx x d dz ) L y = i planckover2pi1 ( r sin θ cos θ cos φ∂ r + cos 2 θ cos φ∂ θ cot θ sin φ∂ φ r sin θ cos θ cos φ∂ r + sin 2 θ cos φ∂ θ ) ( rθφ | L y | ψ ) = i planckover2pi1 (cos φ∂ θ cot θ sin φ∂ φ ) ( rθφ | ψ ) And L z = i planckover2pi1 ( x d dy y d dx ) L z = i planckover2pi1 ( r sin 2 θ sin φ cos φ∂ r + sin θ cos θ sin φ cos φ∂ θ + cos 2 φ∂ φ + r sin 2 θ sin φ cos φ∂ r sin θ cos θ sin φ cos φ∂ θ + sin 2 φ∂
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}