**Unformatted text preview: **Math 210 DHC
Kouba Discussion Sheet 5 1.) Determine the limits of the following sequences. a.) {(1+3/n)”} b.) {3'1“ c.) {M} d.) {2+(—1)n} 571—4 n! e.) {ELSE—ll} f.) {sin(n7r)} g.) {cos(n7r)} h.) {cos(7r/n)} i") {”Sin(”/")} j‘) liminl 1") {i(3+%>2(%)} 12: 1'21 7r/2 7r/4 sec 4)
2.) Convert, but DO NOT EVALUATE, the triple integral / f p3 sin (15 cos ()5 dp dd) d6.
7r/6 0 0
to a.) rectangular coordinates.
b.) cylindrical coordinates. 1r 2 sin 9 1'2
3.) Convert, but DO NOT EVALUATE, the triple integral / f f r3 sin 0 cos 6 dz dr d6?
0 0 0 to a.) rectangular coordinates.
b.) spherical coordinates. 1
4.) Deﬁne the function f (t) = / 8362 d3: . Determine the average value of f over the
t interval [0, 1]. 5.) The following equations are given in spherical coordinates. Sketch their graphs in three
dimensional space. a.) p21 b.) pzsecd) c.) p=cos¢
d.) p=csc¢ e.) p=csc¢sec6 f.) p=se06 72
1+an 6.) Deﬁne a sequence in the following way. Let a1 = 2 and let an.“ 2 for n=1,2,3,4,-~-. a.) Determine a2, a3, and (14.
b.) Determine the limit of the sequence. ...

View
Full Document

- Spring '09
- Kouba
- Calculus