This preview shows pages 1–2. Sign up to view the full content.
midterm 02 – VARELA, CHRISTOPHER – Due: Oct 18 2007, 11:00 pm
1
E & M  Basic Physical Concepts
Electric force and electric Feld
Electric force between 2 point charges:

F

=
k

q
1

q
2

r
2
k
=8
.
987551787
×
10
9
Nm
2
/C
2
C
0
=
1
4
π k
.
854187817
×
10

12
C
2
/N m
2
q
p
=

q
e
=1
.
60217733 (49)
×
10

19
C
m
p
.
672623 (10)
×
10

27
kg
m
e
=9
.
1093897 (54)
×
10

31
kg
Electric Feld:
E
E
=
>
F
q
Point charge:

E

=
k

Q

r
2
,
E
E
=
E
E
1
+
E
E
2
+
···
±ield patterns:
point charge, dipole,
±
plates, rod,
spheres, cylinders,
...
Charge distributions:
Linear charge density:
λ
=
Δ
Q
Δ
x
Area charge density:
σ
A
=
Δ
Q
Δ
A
Surface charge density:
σ
surf
=
Δ
Q
surf
Δ
A
Volume charge density:
ρ
=
Δ
Q
Δ
V
Electric ²ux and Gauss’ law
±lux:
ΔΦ =
E
Δ
A
⊥
=
E
E
·
ˆ
n
Δ
A
Gauss law:
Outgoing Flux from S,
Φ
S
=
Q
enclosed
<
0
Steps:
to obtain electric ±eld
–Inspect
E
E
pattern and construct
S
–Find Φ
s
=
±
surface
E
E
·
d
E
A
=
Q
encl
<
0
, solve for
E
E
Spherical:
Φ
s
=4
π r
2
E
Cylindrical:
Φ
s
=2
π r D E
Pill box:
Φ
s
=
E
Δ
A
, 1 side;
= 2
E
Δ
A
, 2 sides
Conductor:
E
E
in
= 0,
E
±
surf
= 0,
E
⊥
surf
=
σ
surf
<
0
Potential
Potential energy:
Δ
U
=
q
Δ
V
1 eV
≈
1
.
6
×
10

19
J
Positive charge moves from high
V
to low
V
Point charge:
V
=
kQ
r
V
=
V
1
+
V
2
=
Energy of a chargepair:
U
=
kq
1
q
2
r
12
Potential di³erence:

Δ
V

=

E
Δ
s
±

,
Δ
V
=

E
E
·
Δ
Es
,
V
B

V
A
=

²
B
A
E
E
·
dEs
E
=

dV
dr
,
E
x
=

Δ
V
Δ
x
³
³
³
fix y,z
=

∂V
∂x
, etc.
Capacitances
Q
=
CV
Series:
V
=
Q
C
eq
=
Q
C
1
+
Q
C
2
+
Q
C
3
+
,
Q
=
Q
i
Parallel:
Q
=
C
eq
V
=
C
1
V
+
C
2
V
+
,
V
=
V
i
Parallel platecapacitor:
C
=
Q
V
=
Q
Ed
=
<
0
A
d
Energy:
U
=
²
Q
0
V dq
=
1
2
Q
2
C
,
u
=
1
2
C
0
E
2
Dielectrics:
C
=
κC
0
,
U
κ
=
1
2
κ
Q
2
C
0
,
u
κ
=
1
2
C
0
κ E
2
κ
Spherical capacitor:
V
=
Q
4
π<
0
r
1

Q
4
0
r
2
Potential energy:
U
=

E
p
·
E
E
Current and resistance
Current:
I
=
dQ
dt
=
nq v
d
A
Ohm’s law:
V
=
IR
,
E
=
ρJ
E
=
V
=
,
J
=
I
A
,
R
=
ρ=
A
Power:
P
=
IV
=
V
2
R
=
I
2
R
Thermal coe´cient of
ρ
:
α
=
Δ
ρ
ρ
0
Δ
T
Motion of free electrons in an ideal conductor:
aτ
=
v
d
→
qE
m
τ
=
J
nq
→
ρ
=
m
2
τ
Direct current circuits
V
=
Series:
V
=
eq
=
1
+
2
+
3
+
,
I
=
I
i
Parallel:
I
=
V
R
eq
=
V
R
1
+
V
R
2
+
V
R
3
+
,
V
=
V
i
Steps:
in application of Kirchho²’s Rules
–Label currents:
i
1
,i
2
3
,...
–Node equations:
∑
i
in
=
∑
i
out
–Loop equations:
“
∑
(
²E
)+
∑
(
∓
iR
)=0”
–Natural:
“+” for looparrow entering

terminal
“

” for looparrowparallel to current ³ow
RC circuit:
if
dy
dt
+
1
RC
y
= 0,
y
=
y
0
exp(

t
)
Charging:
E 
V
c

Ri
= 0,
1
c
dq
dt
+
R
di
dt
=
i
c
+
R
dt
=0
Discharge:
0=
V
c

=
q
c
+
R
dt
,
i
c
+
R
dt
Magnetic Feld and magnetic force
μ
0
π
×
10

7
Tm
/
A
Wire:
B
=
μ
0
i
2
Axis of loop:
B
=
μ
0
a
2
i
2(
a
2
+
x
2
)
3
/
2
Magnetic force:
E
F
M
=
i
E
D
×
E
B
→
qEv
×
E
B
Loopmagnet ID:
Eτ
=
i
E
A
×
E
B
,
Eμ
=
iA
ˆ
n
Circular motion:
F
=
mv
2
r
=
q v B
,
T
=
1
f
=
2
v
Lorentz force:
E
F
=
q
E
E
+
×
E
B
Hall e³ect:
V
H
=
F
M
d
q
,
U
=

·
E
B
Sources of
E
B
and magnetism of matter
BiotSavart Law:
Δ
E
B
=
μ
0
4
π
i
Δ
>
=
×
ˆ
r
r
2
,
B
=
μ
0
4
π
q>v
×
ˆ
r
r
2
Δ
B
=
μ
0
4
π
i
Δ
y
r
2
sin
θ
,
sin
θ
=
a
r
,
Δ
y
=
r
2
Δ
θ
a
Ampere’s law:
M
=
±
L
E
B
·
dEs
=
μ
0
I
encircled
Steps:
to obtain magnetic ±eld
–Inspect
E
B
pattern and construct loop
L
–Find
M
and
I
encl
, and solve for
E
B
.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
This is the end of the preview. Sign up
to
access the rest of the document.
 Spring '10
 Turner

Click to edit the document details