57324-0136147054_11

57324-0136147054_11 - Section 11.1 11.1.1: v = RS = 3 1, 5...

This preview shows pages 1–6. Sign up to view the full content.

Section 11.1 11.1.1: v = −→ RS = h 3 1 , 5 2 i = h 2 , 3 i . The position vector of the point P (2 , 3) and RS are shown next. 1 2 3 x 1 2 3 4 5 y P O R S 11.1.2: v = RS = h 1 ( 2) , 4 ( 3) i = h 3 , 7 i . 11.3.3: v = RS = h− 5 5 , 10 10 i = 10 , 20 i . The position vector of the point P and RS are shown next. -10 -5 5 x -20 -10 10 y P S R 11.1.4: v = RS = h 15 ( 10) , 25 20 i = h 25 , 45 i . 11.1.5: w = u + v = h 1 , 2 i + h 3 , 4 i = h 1+3 , 2+4 i = h 4 , 2 i . The next Fgure illustrates this computation in the form of the triangle law for vector addition (see ±ig. 11.1.6 of the text). 1289

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
1 2 3 4 x -2 2 y u v w = u + v 11.1.6: u + v = h 4 , 2 i + h− 2 , 5 i = h 4 2 , 2+5 i = h 2 , 7 i . 11.1.7: Given: u =3 i +5 j , v =2 i 7 j : u + v i j +2 i 7 j =(3+2) i +(5 7) j =5 i 2 j . The next fgure illustrates the triangle law For vector addition using u and v . 3 5 x -2 5 y u v u + v 11.1.8: u + v = h 7 10 , 5+0 i = 3 , 5 i = 3 i j . 11.1.9: Given: a = h 1 , 2 i and b = 3 , 2 i . Then: | a | = p (1) 2 +( 2) 2 = 5 , |− 2 b | = |h− 6 , 4 i| = 36 + 16 = 2 13 , | a b | = |h 1 ( 3) , 2 2 = 16 + 16 = 4 2 , a + b = h 1 3 , 2+2 i = 2 , 0 i , 3 a 2 b = h 3 , 6 i−h− 6 , 4 i = h 3 ( 6) , 6 4 i = h 9 , 10 i . 1290
11.1.10: Given: a = h 3 , 4 i and b = h− 4 , 3 i . Then: | a | = 9+16 = 25 = 5 , |− 2 b | = |h− 8 , 6 i| = 64 + 36 = 10 , | a b | = |h 3 ( 4) , 4 3 = 49 + 1 = 5 2 , a + b = h 3 4 , 4+3 i = 1 , 7 i , 3 a 2 b = h 9 , 12 i−h− 8 , 6 i = h 9 ( 8) , 12 6 i = h 17 , 6 i . 11.1.11: Given: a = 2 , 2 i and b = 3 , 4 i . Then: | a | = 4+4 = 8=2 2 , 2 b | = 6 , 8 = 36 + 64 = 10 , | a b | = 2 ( 3) , 2 ( 4) = 1 , 2 = 1+4 = 5 , a + b = 2 3 , 2 4 i = 5 , 6 i , 3 a 2 b = 6 , 6 6 , 8 i = 6 ( 6) , 6 ( 8) i = h 0 , 2 i . 11.1.12: Given: a = 2 h 4 , 7 i = 8 , 14 i and b = 3 4 , 2 i = h 12 , 6 i . Then: | a | = 64 + 196 = 260 = 2 65 , 2 b | = 24 , 12 = 576 + 144 = 720 = 12 5 , | a b | = 8 12 , 14 6 = 20 , 20 = 400 + 400 = 20 2 , a + b = 8+12 , 14 + 6 i = h 4 , 8 i , 3 a 2 b = 24 , 42 i−h 24 , 12 i = 24 24 , 42 12 i = 48 , 54 i . 11.1.13: Given: a = i +3 j and b =2 i 5 j . Then: | a | = | i j | = 1+9 = 10 , 2 b | = | 4 i 10 j | = 16 + 100 = 2 29 , | a b | = i +8 j | = 1+64 = 65 , a + b = i j +2 i 5 j =3 i 2 j , 1291

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
3 a 2 b =3 i +9 j 4 i +10 j = i +19 j . 11.1.14: Given: a =2 i 5 j and b = i 6 j . Then: | a | = | 2 i 5 j | = 4+25 = 29 , |− 2 b | = 2 i +12 j | = 4 + 144 = 2 37 , | a b | = | i + j | = 2 , a + b i 5 j + i 6 j i 11 j , 3 a 2 b =6 i 15 j 2 i j =4 i 3 j . 11.1.15: Given: a i and b = 7 j . Then: | a | = | 4 i | = 16 = 4 , 2 b | = | 14 j | = p (14) 2 =14 , | a b | = | 4 i +7 j | = 16 + 49 = 65 , a + b i 7 j , 3 a 2 b =12 i +14 j . 11.1.16: Given: a = i j and b i +2 j . Then: | a | = 1+1 = 2 , 2 b | = 4 i 4 j | = 32 = 4 2 , | a b | = 3 i 3 j | = 18 = 3 2 , a + b = i j i j = i + j , 3 a 2 b = 3 i 3 j 4 i 4 j = 7 i 7 j . 11.1.17: Because | a | = 9+16 =5, u = 1 5 a = 3 5 i 4 5 j and v = 1 5 a = 3 5 i + 4 5 j . 1292
11.1.18: Because | a | = 25 + 144 = 13, u = 1 13 a = 5 13 i 12 13 j and v = 1 13 a = 5 13 i + 12 13 j .

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

This document was uploaded on 11/28/2010.

Page1 / 152

57324-0136147054_11 - Section 11.1 11.1.1: v = RS = 3 1, 5...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online