Fourier Series - a cos bx + b sin bx ) + C Values of Sine...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Necessary Formulas for Fourier Series Trigonometry 1. cos 2 A = 1 + cos 2 A 2 2. sin 2 A = 1 - cos 2 A 2 3. sin A sin B = 1 2 cos( A - B ) - 1 2 cos( A + B ) 4. cos A cos B = 1 2 cos( A - B ) + 1 2 cos( A + B ) 5. sin A cos B = 1 2 sin( A - B ) + 1 2 sin( A + B ) A Table of Integrals 1. Z x sin axdx = 1 a 2 sin ax - x a cos ax + C 2. Z x cos axdx = 1 a 2 cos ax + x a sin ax + C 3. Z x n sin axdx = - x n a cos ax + n a Z x n - 1 cos axdx 4. Z x n cos axdx = x n a sin ax - n a Z x n - 1 sin axdx 5. Z e ax sin bxdx = e ax a 2 + b 2 ( a sin bx - b cos bx ) + C 6. Z e ax cos bxdx = e ax a 2 + b 2 (
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: a cos bx + b sin bx ) + C Values of Sine and Cosine Functions 1. sin nπ = 0 2. cos nπ = (-1) n 3. sin 2 nπ = 0 4. cos 2 nπ = 1 5. cos nπ 2 = (-1) n/ 2 1 + (-1) n 2 6. sin nπ 2 = (-1) ( n +3) / 2 1-(-1) n 2...
View Full Document

This note was uploaded on 11/29/2010 for the course MATH.SCI MAS201 taught by Professor Limmikyoung during the Spring '10 term at 카이스트, 한국과학기술원.

Ask a homework question - tutors are online