fizik e - From Wikipedia, the free encyclopedia Jump to:...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
From Wikipedia, the free encyclopedia Jump to: navigation , search This article is about the scalar physical quantity. For other uses, see Energy (disambiguation) . Lightning is the electric breakdown of air by strong electric fields and is a flow of energy. The electric potential energy in the atmosphere changes into thermal energy, light, and sound, which are other forms of energy. In physics , energy (from the Greek νέργεια - energeia , "activity, operation", from νεργός - energos , "active, working" [1] ) is a quantity that can be assigned to every particle, object, and system of objects as a consequence of the state of that particle, object or system of objects. Different forms of energy include kinetic , potential , thermal , gravitational , sound , elastic , light , and electromagnetic energy. The forms of energy are often named after a related force. German physicist Hermann von Helmholtz established that all forms of energy are equivalent - energy in one form can disappear but the same amount of energy will appear in another form. [2] Energy is subject to a conservation law . Energy is a scalar physical quantity. In the International System of Units (SI), energy is measured in joules , but in some fields other units such as kilowatt-hours and kilocalories are also used. Any form of energy can be transformed into another form. When energy is in a form other than thermal energy, it may be transformed with good or even perfect efficiency, to any other type of energy. With thermal energy, however, there are often limits to the efficiency of the conversion to other forms of energy, due to the second law of thermodynamics . As an example, oil is reacted with oxygen, potential energy is released, since new chemical bonds are formed in the products which are more powerful than those in the oil and oxygen. The released energy resulting from this process may be converted directly to electricity (as in a fuel cell) with good efficiency. Alternately it may be converted into thermal energy, if the oil is simply burned in order to heat the combustion gases to a certain temperature. In the latter case, however, some of the thermal energy can no longer be used to perform work at that temperature, and is said to be "degraded." As such, it exists in a form unavailable for further transformation. The remainder of the thermal energy may be used to produce any other type of energy, such as electricity. In all such energy transformation processes, the total energy remains the same. Energy may not be created nor destroyed. This principle, the conservation of energy , was first postulated in the early 19th century, and applies to any isolated system . According to Noether's theorem ,
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
the conservation of energy is a consequence of the fact that the laws of physics do not change over time. [3]
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 12/01/2010 for the course SUKAN md taught by Professor Saipon during the Spring '10 term at Albany College of Pharmacy and Health Sciences.

Page1 / 22

fizik e - From Wikipedia, the free encyclopedia Jump to:...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online