725_11 - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20...

Info icon This preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [Fi [79 Lin * 17 —— No * PgE [79 CHAPTER 11 Heat Exchangers ALLAN D. KRAUS University of Akron Akron, Ohio 11.1 Introduction 11.2 Governing relationships 11.2.1 Introduction 11.2.2 Exchanger surface area 11.2.3 Overall heat transfer coefficient 11.2.4 Logarithmic mean temperature difference 11.3 Heat exchanger analysis methods 11.3.1 Logarithmic mean temperature difference correction factor method 11.3.2 N tu method Specific N tu relationships 11.3.3 P N tu ,c method 11.3.4 ψ P method 11.3.5 Heat transfer and pressure loss 11.3.6 Summary of working relationships 11.4 Shell-and-tube heat exchanger 11.4.1 Construction 11.4.2 Physical data Tube side Shell side 11.4.3 Heat transfer data Tube side Shell side 11.4.4 Pressure loss data Tube side Shell side 11.5 Compact heat exchangers 11.5.1 Introduction 11.5.2 Classification of compact heat exchangers 11.5.3 Geometrical factors and physical data 11.5.4 Heat transfer and flow friction data Heat transfer data Flow friction data 11.6 Longitudinal finned double-pipe exchangers 11.6.1 Introduction 797
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
798 HEAT EXCHANGERS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [798 Lin 0.9 —— Nor PgE [798 11.6.2 Physical data for annuli Extruded fins Welded U-fins 11.6.3 Overall heat transfer coefficient revisited 11.6.4 Heat transfer coefficients in pipes and annuli 11.6.5 Pressure loss in pipes and annuli 11.6.6 Wall temperature and further remarks 11.6.7 Series–parallel arrangements 11.6.8 Multiple finned double-pipe exchangers 11.7 Transverse high-fin exchangers 11.7.1 Introduction 11.7.2 Bond or contact resistance of high-fin tubes 11.7.3 Fin efficiency approximation 11.7.4 Air-fin coolers Physical data Heat transfer correlations 11.7.5 Pressure loss correlations for staggered tubes 11.7.6 Overall heat transfer coefficient 11.8 Plate and frame heat exchanger 11.8.1 Introduction 11.8.2 Physical data 11.8.3 Heat transfer and pressure loss 11.9 Regenerators 11.9.1 Introduction 11.9.2 Heat capacity and related parameters Governing differential equations 11.9.3 N tu method 11.9.4 Heat transfer and pressure loss Heat transfer coefficients Pressure loss 11.10 Fouling 11.10.1 Fouling mechanisms 11.10.2 Fouling factors Nomenclature References 11.1 INTRODUCTION A heat exchanger can be defined as any device that transfers heat from one fluid to another or from or to a fluid and the environment. Whereas in direct contact heat exchangers, there is no intervening surface between fluids, in indirect contact heat exchangers, the customary definition pertains to a device that is employed in the trans- fer of heat between two fluids or between a surface and a fluid. Heat exchangers may be classified (Shah, 1981, or Mayinger, 1988) according to (1) transfer processes,
Image of page 2
GOVERNING RELATIONSHIPS 799 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [79 Lin 1.7 —— No PgE [79 (2) number of fluids, (3) construction, (4) heat transfer mechanisms, (5) surface com- pactness, (6) flow arrangement, (7) number of fluid passes, and (8) type of surface.
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern