725_14 - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20...

Info icon This preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [Fi [10 Lin 6.2 —— No * PgE [10 CHAPTER 14 Heat Transfer Enhancement R. M. MANGLIK Thermal-Fluids and Thermal Processing Laboratory Department of Mechanical, Industrial and Nuclear Engineering University of Cincinnati, Cincinnati, Ohio 14.1 Introduction 14.1.1 Classification of enhancement techniques 14.1.2 Performance evaluation criteria 14.2 Treated surfaces 14.2.1 Boiling 14.2.2 Condensing 14.3 Rough surfaces 14.3.1 Single-phase flow 14.3.2 Boiling 14.3.3 Condensing 14.4 Extended surfaces 14.4.1 Single-phase flow 14.4.2 Boiling 14.4.3 Condensing 14.5 Displaced enhancement devices 14.5.1 Single-phase flow 14.5.2 Boiling 14.5.3 Condensing 14.6 Swirl flow devices 14.6.1 Single-phase flow 14.6.2 Boiling 14.6.3 Condensing 14.7 Coiled tubes 14.7.1 Single-phase flow 14.7.2 Boiling 14.7.3 Condensing 14.8 Additives for liquids 14.8.1 Single-phase flow 14.8.2 Boiling 14.9 Active techniques 14.10 Compound enhancement Nomenclature References 1029
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
1030 HEAT TRANSFER ENHANCEMENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [103 Lin 0.0 —— Nor PgE [103 14.1 INTRODUCTION The conversion, utilization, and recovery of energy in every industrial, commercial, and domestic application involve a heat exchange process. Some common examples are steam generation and condensation in power and cogeneration plants; sensible heating and cooling of viscous media in thermal processing of chemical, pharma- ceutical, and agricultural products; refrigerant evaporation and condensation in air conditioning and refrigeration; gas flow heating in manufacturing and waste-heat re- covery; air and liquid cooling of engine and turbomachinery systems; and cooling of electrical machines and electronic devices. Improved heat exchange, over and above that in the usual or standard practice, can significantly improve the thermal efficiency in such applications as well as the economics of their design and operation. The engineering cognizance of the need to increase the thermal performance of heat exchangers, thereby effecting energy, material, and cost savings as well as a con- sequential mitigation of environmental degradation had led to the development and use of many heat transfer enhancement techniques. These methods have in the past been referred to variously as augmentation and intensification, among other terms. There is an enormous database of technical literature on the subject, now estimated at over 8000 technical papers and reports, which has been disseminated periodically in numerous bibliographic reports (Bergles et al., 1983, 1991, 1995; Jensen and Shome, 1994), reviews (Webb and Bergles, 1983a; Webb, 1987; Shatto and Peterson, 1996; Bergles, 1998, 1999; Manglik and Bergles, 2002a), and monographs and edited texts (Thome, 1990; Webb, 1994; Manglik and Kraus, 1996; Kakac ¸ et al., 1999). This information growth, represented by the typical yearly distribution of technical pub- lications depicted in Fig. 14.1, urgently warrants that a digital library of enhanced heat and mass transfer be established (Bhatnagar and Manglik, 2002). This literature
Image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern