{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Lecture14Extras

# Lecture14Extras - Maxwell Model(better for stress...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Maxwell Model (better for stress relaxation) dσ dε Hookeʼs law when applied stress =E dt dt varies in time: dε σ assumes viscous = forces are dt η newtonian; plug in to Hookeʼs law equation above. rearrange to get: 1 ∂σ σ ∂ε( t ) += E ∂t η ∂t if stress is constant, this predicts no creep! 29 Maxwell Model 1 ∂σ σ ∂ε( t ) += E ∂t η ∂t impose a condition of constant strain, integrate σ E ln = − t σ0 η rearrange: ⎡E⎤ ⎢− t ⎥ ⎣η⎦ ⎡ t⎤ ⎢− ⎥ ⎣ τt ⎦ σ = σ 0e = σ 0e 30 Maxwell Model ln σ E =− t σ0 η σ = σ 0e ⎡E⎤ ⎢− t ⎥ ⎣η⎦ = σ 0e ⎡ t⎤ ⎢− ⎥ ⎣ τt ⎦ 31 Voigt Model (better for creep) dε( t ) σ ( t ) = Eε( t ) + η d (t ) apply constant stress: dε( t ) ε( t ) σ 0 + '= d( t ) τt η ⎛ t ⎞⎤ ⎡ ⎜− ' ⎟ ⎜ ⎟ σ0 ⎢ ⎝ τ t ⎠⎥ ε( t ) = 1− e ⎥ E⎢ ⎣ ⎦ solution to linear differential equation: 32 ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 4

Lecture14Extras - Maxwell Model(better for stress...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online