This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: a). Z π/ 2 sin n x dx = n1 n Z π/ 2 sin n2 x dx for n ≥ 2 an integer. b). Z (ln x ) n dx = x (ln x ) nn Z (ln x ) n1 dx c). Z x m sin x dx =x m cos x + m Z x m1 cos x dx 4. Compute the following limits a). lim x →∞ x 3 e x 2 b). lim x →∞ x sin 1 x c). lim x →∞ ( e x + x ) 1 /x d). lim x → + ( 1 xln x ) e). lim x → ( π/ 2) + cos x 1sin x f). lim x → 1 + ln x tan ( πx/ 2) 2...
View
Full Document
 Spring '08
 Staff
 Integrals, Fourier Series, Sin, lim, Rational number, dx

Click to edit the document details