me211solution1

# me211solution1 - 2-9 ‘ W eAB =‘{c.o’s45isin45° = eAC...

This preview shows pages 1–9. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2-9 ‘ W}. eAB =‘{c.o’s45isin45°} = eAC =.{_cés 30°, —sin:30?} ¥ We can write F = aeAB‘+ beAC, where a and b are C0nstant. 22'22 '[Z—a #0; ~ﬂ'aél‘b: —500 2 2 V ', ‘2 ‘2 ' Solve the equ‘atio‘ns for a and b a 7 —448,b = 366 ‘ I The magnitude of two components is" FAG = 366N <{AmueV wauooﬂ Pym/{me “We, @W'FOWM9 FAB avid Fae. Fm; : (3094?, .F/WQMQ’S") Eﬂc : (\$750609ng ‘Fﬁo7m300> 317,45“? EM 1 E (TM; 051,450+ “FACCOE ?0° ,0 ‘FAGQ'M¢§v*FAc4\M?C‘> 2 (0 I _é7m> FAD, Cﬁ¢§0+FAc C0230“ 3: 0. FM; 4M4? 1 Ewan/30° i «3‘00. golUQ ‘ﬁJJO Q%Owl+t2¢/\\$. FAQ 6 Wﬁcc ) LMeﬁdJﬁve am wean; MMQ ohmm 04f,” T} OFFMHN, f0 0-? i-vx7+Fa/Ha MCéb‘YVWDQ W. 2-20 ‘ 1:2 {—6255in30°,4625¢os30°} F3 {~7505in45°,750cos45°} .‘;FR'=F]+F2+F3 _ _ Y 7‘: {(680— 625siri 30° — 7505111450), (—510 —' 625605 30° + 75000s45‘?)} i ={~162.8,—521} ' ' The magnitude of the resultant force is ‘ _ .FR'-="/(—.162.8)2+.(—521)2 545.8N » ' ¢=tan-F[ ‘521 j=73° , —162.8 - '_ The angle of the resultant force measured from the positive x is ' . 9 : 180° + 7341:2'53o 2-48 Fl {0,350sin40°,350cos40°} {0,225,268} F2 F3 '{250008 60°,—25000\$45°,250c0s 60°} {125,—177,125} R=E+E+E, ' = {(71 +125),(225 +50—177),(268—50+125)} = {196,98,343} {100cos45°,100c0s60°,100cos120°} {71,50,-—50} The different notation using i, j and k is also possible F1 = 350{sin 40°j + cos 40°k}’= {225 j + 268k} ' "F2 =100{c'os45°i+ cos60°j + cos120°k} = {71i+ 50j — 50k} ~ 2F3 '= 250{cos 60°i .—-cos 45° j +“c_os 609k} = {125i —_17_7 j + 125k} FR; F, + 1F; 4 F3 = (71 {r 125)ii+ (225 + 50—177)j+ (268—— 50+ 1.25)k = 196i + 98 j + 343k ' ' ‘The magnitude of the resultant force is 2 FR = JFRj + FR; + FR] = x/1962 +982 + 3432 407N " The coordinate direction angles are - FR 407 : .' - F '52:" c'o_s“,6'= —R.y_ '= , : FR" 407 0087 = FRI egg, 7_=32.6° 2—70 - A ' ‘. A r“, :5 frA 2 {4000} l— {125’sir-125°,125cos25°}_= {(40041255in25’°),(—12Spos25.°)}2 I ’ ‘ ':_{452{8,..—113.3}"1 ' ” " " " 'or . {AB = rBI.— IA 2 4001.4 (125 sin 259i + 125 cos-25°j) = 452.8i—113.3j ‘ _ The magnitude. of the pogition vector from'A to B_ is ' erB|¥‘/452.82+(—113.3)2 , 2-89 __ .__ u The component of F along AC is the projection of F along AC-(FI‘I) " The projection can be found by dot product with_the'unit vector along AC ’ #175930 (1) Express F as a Cartesian vector F=|F|eBD Vector F can be expressed by the magnitude multiplied by the unit vector, which tells us the direction of the vector. The unit vector along BD can be calculated from a position vector along BD. _ l.BD _.eBD. _ erDl. r '="rOD —r ' BD 01; :Although I‘OD can be'fOun’d directly from the picture; (08 is not simple. We need to use i "information about point B given in the problem “point B is located 3m along the rod- from end .I '- .which means the length of BC is 3. 76 rOB:r0C+rCB r _ _ CA ' rCBferBleCA _erBl I . ‘ Ira-l. ,. I "m ;.r0;.—yoc 5 {0,03} _—{—3,4‘,0} = {3,—.4,4} Therefbre, rCB = [ram CA )2 (aw = {1.4056,—1.8741,1.8741} 1' lrcAl J32 + (—4)2 + 42 r05.={—3,4,Q}+{1.4056,—1.8'741,1.8741}'={—1.5944,2.1259,1.8741} ‘ ' rBD.:{4',6,O}+.{f1.5944,‘2.1259§1.8741}={5.5944,3;8741,—1.8741} 7 .I " {5.5944,3.8741,—1.8741} ‘/5.59442 + 3.87412 + (—1.8741)2 F: (600) = {475.5659,329.3275,—159.3125} rAc ﬁe; {—1474} W={e0.4685,0.6247,416247} (2) e. ;=—= --".C- Incl Ire/4| '.\/(—13)2+,42+(—4)2 ' From (1) and (2), FN = F-eAC = {475.5659,329.3275,—159.3125}-{—0.4685,0.6247,~0.6247} 82.45N The compc‘ment of F perpendicular to the rod is Fi Ff + Ff = F2 = 6002 Fl = «6002 —82.452 594.3 N 2-91 1 ’PYDJéch‘ﬁA a"? Fl A attng m poke, .The projection can be found by dot product with the unit vector along the pole Hﬁﬂﬁm ' Unitvector along the pole: _ rOA _ {23234-1}1 2 '2" 1 %“t|”?32f7‘??7 0A ( 1) . “Therefore, perF: F” = {2,4,10}-{§,-§—,7%} 0.667kN ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 9

me211solution1 - 2-9 ‘ W eAB =‘{c.o’s45isin45° = eAC...

This preview shows document pages 1 - 9. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online