math16B_review_exer1 - Math 16B, Section 1 Fall 2005...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 16B, Section 1 Fall 2005 Sarason REVIEW EXERCISES 1 1. In each part, find the first partial derivatives of the given function f ( x, y ) (a) f ( x, y ) = x 5- 10 x 3 y 2 + 5 xy 4 (b) f ( x, y ) = 20 x 3 / 5 y 2 / 5 (c) f ( x, y ) = e- x 2 /y 2. In each part, evaluate the integral I = RR R f ( x, y ) dydx of the given function f over the given region R . (a) f ( x, y ) = x 2 + y 4 ; R is the rectangle given by- 1 x 1, 0 y 2. (b) f ( x, y ) = x 2- y 2 ; R is the triangle with vertices (0 , 0) , (1 , 0) , (1 , 2). (c) f ( x, y ) = x 2 y 3 ; R is defined by the inequalities x 2 + y 2 1, y 0. 3. For each part, determine the critical points of the function f ( x, y ), and determine the nature of each critical point, to the extent possible, by means of the second derivative test. (a) f ( x, y ) = x 3- y 2- 3 x + 4 y (b) f ( x, y ) = x 3 + y 3- 9 xy (c) f ( x, y ) = 4 x 4- 2 y 2- xy (d) f ( x, y ) = 4 x 8- 8 x 4- xy 4. (a) Find the maximum and minimum values of the function4....
View Full Document

Ask a homework question - tutors are online