This** preview**
has intentionally

**sections.**

*blurred***to view the full version.**

*Sign up*
**Unformatted text preview: **⇒ x = 4 3 √ 4 . 1 If x < 4 3 √ 4, f ( x ) < 0, and if x > 4 3 √ 4, f ( x ) > 0. Thus, f ( x ) has an absolute minimum at x = 4 3 √ 4. In this case the length of the ladder is √ f ( x ) = ± (4 3 √ 4 + 4) 2 + 64(4 3 √ 4)-2 (4 3 √ 4 + 4) 2 ≈ 14 . 5ft 2. Find f ( θ ) that satisﬁes f 00 ( θ ) = sin θ + cos θ, f (0) = 3 , f (0) = 4 . Solution: f ( θ ) =-cos θ + sin θ + C 1 f ( θ ) =-sin θ-cos θ + C 1 θ + C 2 Since f (0) =-1 + C 2 = 3, C 2 = 4. And f (0) =-1 + C 1 = 4, C 1 = 5. Therefore, f ( θ ) =-sin θ-cos θ + 3 θ + 4 . 2...

View
Full Document

- Fall '06
- McAdam
- Calculus, 8 FT, 4 ft, ladder, ft tall runs, Guoliang Wu