setLinearAlgebra

# setLinearAlgebra - ARNOLD PIZER Rochester WeBWorK Problem...

• Notes
• 47
• 50% (2) 1 out of 2 people found this document helpful

This preview shows pages 1–3. Sign up to view the full content.

ARNOLD PIZER rochester problib from CVS July 7, 2004 Rochester WeBWorK Problem Library WeBWorK assignment LinearAlgebra1Systems due 1/1/09 at 2:00 AM 1. (1 pt) setLinearAlgebra1Systems/ur la 1 3.pg Solve the system using substitution x - 2 y = 1 4 x - 7 y = 5 x = y = 2. (1 pt) setLinearAlgebra1Systems/ur la 1 4.pg Solve the system using substitution - 4 x - 5 y = 54 7 x + 3 y = - 60 x = y = 3. (1 pt) setLinearAlgebra1Systems/ur la 1 4a.pg Solve the system using elimination - 2 x - 9 y = 42 - 5 x - 9 y = 24 x = y = 4. (1 pt) setLinearAlgebra1Systems/ur la 1 5.pg Solve the system using elimination 4 x + 3 y - 5 z = 14 3 x + 4 y + 6 z = - 1 6 x - 5 y - 6 z = 29 x = y = z = 5. (1 pt) setLinearAlgebra1Systems/ur la 1 23.pg Write the system - 6 y + 9 z = - 5 4 x - 4 y = 10 2 x + 11 y - 7 z = - 2 in matrix form. x y z = 6. (1 pt) setLinearAlgebra1Systems/ur la 1 7.pg Write the augmented matrix of the system - 73 y + 2 z = 9 8 x + 83 z = 2 5 x + 5 y - z = - 9 7. (1 pt) setLinearAlgebra1Systems/ur la 1 1.pg Perform one step of row reduction, in order to calculate the val- ues for x and y by back substitution. Then calculate the values for x and for y. Also calculate the determinant of the original matrix. You can let webwork do much of the calculation for you if you want (e.g. enter 45-(56/76)(-3) instead of calculating the value out). You can also use the preview feature in order to make sure that you have used the correct syntax in entering the answer. [Note– since the determinant is unchanged by row reduction it will be easier to calculate the determinant of the row reduced matrix.] 1 36 18 43 x y = -5 4 1 36 0 x y = -5 x = y = det = 8. (1 pt) setLinearAlgebra1Systems/ur la 1 2.pg Perform one step of row reduction, in order to calculate the val- ues for x and y by back substitution. Then calculate the values for x and for y. Also calculate the determinant of the original matrix. You can let webwork do much of the calculation for you if you want (e.g. enter 45-(56/76)(-3) instead of calculating the value out). You can also use the preview feature in order to make sure that you have used the correct syntax in entering the answer. This problem has rather difficult complex calculations. [Note– since the determinant is unchanged by row reduction it will be easier to calculate the determinant of the row reduced matrix.] 4-3i -4-5i 5 4-3i x y = -56-21i -12-41i 4-3i -4-5i 0 x y = -56-21i x = y = det = 9. (1 pt) setLinearAlgebra1Systems/ur la 1 4b.pg Solve the system using matrices (row operations) - 2 x + 9 y = 55 - 5 x - 9 y = - 83 x = y = 10. (1 pt) setLinearAlgebra1Systems/ur la 1 5a.pg Solve the system using matrices (row operations) - 2 x - 3 y + 5 z = 13 - 3 x - 6 y + 2 z = - 4 5 x - 3 y - 4 z = - 9 x = 1

This preview has intentionally blurred sections. Sign up to view the full version.

y = z = 11. (1 pt) setLinearAlgebra1Systems/ur la 1 16.pg Solve the system x + y = 12 3 x - 2 y = 21 10 x - 5 y = 75 x = y = 12. (1 pt) setLinearAlgebra1Systems/ur la 1 17.pg Solve the system x 1 + 3 x 3 + 4 x 4 = 33 x 2 - 3 x 3 - 2 x 4 = - 25 3 x 1 - 2 x 2 + 11 x 3 + 16 x 4 = 117 - x 2 + 3 x 3 + 6 x 4 = 37 x 1 = x 2 = x 3 = x 4 =
This is the end of the preview. Sign up to access the rest of the document.
• Spring '08
• KLEMES
• Algebra, Triangular matrix, Rochester, WeBWorK Problem Library

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern