**Unformatted text preview: **MA 160 Section 2.6 Worksheet
Marginals and Differentials Name éw (fife? the i. For a certain manufacturer, the daily cost in doilars of producing 3; items is C(x) = eoosx3 — 0.5x2 + 2336 + 300 . Current daily production is 50 items. a. Use C(X) to calculate C(50) , the current daily cost .
C (We) : l :0 Eé'o’aﬁgm . 5150);; jgéﬁ—a') +309.)
'3: 50 '75s 1 b. Use C(x) to calculate C(51) , the daily cost if 51
items are produced. C(51); loci/55(5)): 15(5 ij+2gfs ;)-+Seo e 3/090, 74., c. Calcuiate AC for x = 50 and Ax =1 , the change in
cost when daily production increases from 50 to 51 items.
AC = C(x+Ax) — C(x) = C(SO -t- l) — C(50) 6. Calculate C (50) the marginal cost when 50 items are produced daily.
(1'0: 05—» #01"; (50} “4,0 1,923 1",: $i5¢5ﬂ YFind C '(x) , the marginal cost ﬁmction.
C" ’06.) r: s eigx'ﬁ )4 +359 =C(5i) C(50) = 10%? we» let's: g15:. “7&2 f. Use C(x + 1) e C (x) + C '(x) and your answers from
parts a and e to approximate C(51) . “593:5: C(goerzﬁ'xCC5‘oi‘erfé5¢§
(3(513ce’io‘75: PM; 5.9.: $lei€f¢> 5— .
Meme ﬂat; as ., Jam 6
"ff-ALI fCM’t F. m ¢&Wé§« ﬁves (Mme.¢.L image: f) , 2. The demand function Doc) 2 p = 65 —— J; expresses the market price in doilars in order to sell X units of a certain _-reduct.
a. In order to be able to sell 900 units, what should
the price per item be? ﬁé‘i’eul: £53 my £5 «a 3g: 35’ W 9mm meet nu $3 ; 2% Mid @6212}? W39,
(3. Find the revenue function R(x). Recall that Rm: xrai'x(es ngzé§x_%5l£& b. How many units will consumers want to buy if
the price is set at $49? P : 62 5;” w J; d. What is the revenue when 900 items are sold?
Ré‘iéa‘): Cicada (gg'aﬁA ‘3 ‘few iég'wsa)
: 6.?0‘0535»): $57) you e. Find the marginal revenue function. nit») : new ”if x ”a : g. Use your answers from partsdaud f to '-
R(?al)ﬁf fié‘?wo)+ﬁ (9’99) l 3! 56.262wa 1:, 33]) 3&0 f. What is the marginal revenue when 900 items are
sold. R ’{90»¢:2.): £25“ 5* ea; 1.” £2 «:3
“géﬁagﬁwmw mﬂ 7 ...

View
Full Document

- Fall '10
- Guyton