sample-finals-answers-m209

sample-finals-answers-m209 - CON CORDIA UNIVERSITY...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: CON CORDIA UNIVERSITY Department of Mathematics &: Statistics x—+3 $-—+3 ’ (a) hm [-3900] x——»3 (iii) Find the value of each of the following: Course Number Section(s) Mathematics 209 All except EC Examination Date Pages Final April 2010 3 Instructors Course Examiner M. Amir, L. Dube, E. Duma, H. Greenspan, R. Raphael B. Rhodes, J. Ruddy, C. Santana, U. Tiwari Special Instructions I> Ruled booklets to be used. [> Only approved calculators are allowed. AJARKS J [9] 1. .(i) Find lim W : 6% “5"? : am 535: or; tom; I_’_°° '33 x$«,o ~‘XZ \(‘P «co (ii) Given lim f(:z:) : —5 and lim g(:c) = 4, find 420:) gig «gm :2 o gig [9(w)/2f(as)l= — on (as 614% e3 smenn _ $2—3x+2 _ , 332—16 (a) $133133 (:1:~—1) “‘5 (13):;3135 (x_5) Cb) .3. ONE [‘18] 2. (a) If f(:L‘) = 4 - 652310 — 4:53, find f’(a:). ~gO 7K9” (QXL Z (b) If flag) : xzz—Qi’ffrzl find f/(x). ‘ @x‘ngLm —- (KEBMLLXQM _. 3X~6X~3 L z " 2. (c) If HIE) : $31573” find Has). CZX gxey—tv —- 065 5% 6X (’4 “3.2 a 1 (ex-73L (d) If y = 2e<r“-5), then 3/ :? 4Xe><~§ 9 d (e) If y = ln[(:z:2 + 322%], then CT: = ? a 2:163 dy x 3% r (f) lfy 2 an + 51 then — =? 4/; dfli é: (x+§) 3 (3) Find y’ given my 2 ey — 2. V / I 9 +96%; y'eg “<7 (6912):? 67‘ g MATH 209 [9] 3. [5] 4 [5i 5 l9] 6 [9] 7 Final Examination April 2010 Page 2 of 3 A manufacturer currently sells sunglasses for $4 a pair. The price p and the demand :r for these glasses are related by :1: = my) = 7, 000 ~ 500]? If the current price is increased, will revenue increase or decrease? Explain Why. R=><P : Emma—5’00);z E’: 7000‘4000p >0 forlbsq tha flaw . A sphere With a radius of 5 centimeters is coated with ice 0.1 centimeters thick. Use differentials to estimate the volume (V) of the ice. [Recall that V = §7rr3. ] l = 3W3 OW‘VON‘ = Zil—lT'ZOlV: 47352. at :{0T 5 1) 3w . Give a function f : R —> R that is continuous at 0 but not differentiable at 0. Explain. gt: 1 ~1- xfiO‘P X—a 0" LE. . The price p (in dollars) and the demand-3: for a particular steam iron are related by the equation :3 : 1, 000 ~ 20p (A) Express the price p in terms of the demand :22, and find the domain of this 2 5‘0“): 0 < < 000 p 20 are“, m“; X\ l. (B) Find the revenue from the sale of x clock radios. What is the domain f R? .. 0. R= PK - 50X ’ K%O (DOWN Osmmo (C) Find the marginal revenue at a production level of 400 steam irons, and Rt”— 50-* : So’qoqo ‘. {new Media/(RUM (D) Find the marginal revenue at a production level of 650 steam irons, and ‘EVW‘WA (Mame Man mam W FW function. interpret the results. interpret the results. W: 50*691‘1-(9 .. Boyle’s law for enclosed gases states that if the volume is kept constant, the pressure P and the temperature T are related by the equation P/T : k Where It is a constant. If thetemperature is increasing at 3 kelvins per hour, What is the rate of change of pressure when the temperature is 250 kelvins and the pressure is 500 pounds per square inch? -ELOiT 7. o di=3> J“: region T”?- = 6 poms para). (not wharf / a L“ q ~ SGJZ'flbdx: gaglm 300 >< 5x - >(Lx 33 MATH 209 Final Examination April 2010 Page 3 of 3 [12] 8. Compute the following: —2 (a) /(g;—4)-3 dm :2 0"” +C “2 53: ' 3/2 . V2 3/; (c) x dm 3 “ 31m=atc+7m +2.92%? ~+c x~7 “ml W W a 3( Mmlfl 5 A 1 (d) /(3:132+52:)d$ 2 323 *5 £+C— Xstgk’l—i—C, 5 2 2 3:2 __ l 3 (e) /4+$3dcr 3 KWUHX 1+0, 2 12 l (Katya ~ (5 (f) +1) mdx : l- \__+C:. LQE-L) t’C lg 2g [6] 9. Evaluate the following integrals [accurate to 2 decimals]. 5 9; A I - w 3 t , 5_ lZS' (a) Aug 4W (— Well ‘ —,;~20= (igzzléazlw J. J? 3: 3 (b) / ehz h dh : 2 2, 3— 9 ’- iCQ “eql '3 (3503 ~59.6)=433.z [9] 10. Find the area bounded by f(a:) : 52:2 — :1: and g(;r) = 2x for ~2 S :E g 3. o 3 _ Z )(\:o x223 ‘ [$2 (XL—sxwxl +1 éCXEBXXalxlzlsé- [9] 11. Consider the function f(:1:) 2 x4 — 2:123. Show its intercepts, Where it is increasing, decreasing, concave up and concave down. Sketch its graph. x \e‘ : axial: XLCW‘é} l3“: (2 X142 y: \g f 4(1)?- “l Lil!“ \ _ v 0 A 3,; v X~mecep+3 'HJc ©-—- [Maura float/K3092) CONCORDIA UNIVERSITY Department of Mathematics 85 Statistics Course Number Section(s) Mathematics 209 All except EC Examination Date Pages Final December 2009 3 Instructors Course Examiner M. Amir, V. Enolski, H. Greenspan, T. Koulis, R. Raphael R. ~Mearns, R. Raphael, B. Rhodes, F. Romanelli, J. Ruddy, Special Instructions Ruled booklets to be used. Only approved calculators are allowed. D D MARKS rv —32:3 + 53c? — r 1. Find lim 5‘$2 25600 [11] ~5 and lim 9(1) 2 4, find x~+6 '(ii) Given lim fix) x—sfi (a) hm l—3g($)l=‘ll (b) Hm V9($)=2 3:-—>6 :3—r6 (c) g [me/2m = — 0% (iii) Find the value of each of the following: x2~164quz , 1132—393—l—2 2—44 ecu/x = 2 (SW) 1. mil—Bl (5Z3 — f(a+h)—f(a) h 7 find the derivative if 2. Using the definition of the derivative fling) fir) = 3 ~ :23. ” gym a ~(xm°’— 3+)? : (‘3x1+3ylx-lnl).“"?_ 3 X7. lo [21] 3. (a) If fix) 2 26~5z15 — 3:34, find f’(:r). : (b) If : find M X?- 3 x2 k ~3 x k1 F? +23 L. A v 2‘ r \w‘90 ~30x”~t1x3, Wfifl+2xf§ ,— CKZFZJ Exiting.) “Mug—3F 1)“ (75%K+3) 4—3 KL~7>7C7/X/3 (7 ekKlt‘b)?” €51Y C‘ .— 22~9 $3+2$+5 9 .z'—3 Tln.(:z:)+3 If fix) = find f’ (2:) . (C) (d C‘ ) lfy = 65—2-}, then 3/ z? a MATH 209 Final Examination December] 2009 Page 2 of 3. (Continued) l§><1 d (e) Ify : 111(5233 —5)3, then 3% 2 ? 3 (W3fl§> ‘7/é 1 dy _ —l/ «l _ __L - (f) Hy: 6$_7,thenE£—? («[6])(X—7) 6 _. 6 [Y . . ' a ; 2x a (g) Find y’given $2yze2y+7. 2X3 1383‘ = iglegg) % :— fiezgdxl [8] ’4. Does the line tangent to the graph of f = e'“ at a: = 1 pass through the origin? Are there any other lines tangent to the graph of f that pass through the origin? Explain. 4‘60: ex .. eat 04. (film: AA = WOW—m + elm = eXO (we) +ex° = )Q’Cxwodc (3. ORIGIN: on a) : (om ) hence. , Q = QXOCO ~xo+g 3, 02 slides? ' [6] 5. A cube With a Side of 12 centime ers IS coated with we 02 centimeter thick, Use differentials to estimate the volume of the ice. ' 8X0 > O 1‘ 2 '2 fizzwbfil V: a}: 51V = 3a am : 3‘12-(2-0.a)=wl¢»(‘2¥473 (~xo: o . .v . . . . Cl bin/Wat; _ \Z [6] 6. Profit analysrs. The total profit (in dollars) from the sale of :1: charcoal grills is f 35 L Q VL r} a” Pay) = 202: — 0.02952 — 320, 0 s :1: 3 17000 W (a) Find the average profit per grill if 40 grills are produced. [3 = 2%0 ‘ i Y < (b) Find the marginal average profit at a production level of 40 grills: and :2 O ' \l ‘0. interpret the results. p : m 002 + : ,00260‘ 2 = 0.13 § Oak‘sgg (c) Use the results from parts (a) and to estimate the average profit per c ,\,\0 grill if 41 grills are produced. a'f\ _.. — .. / \‘ POM): Mach [Dwell = H,2+O.18 2 {[‘9 /(e [9] 7. Suppose a point is moving along the graph of 3:2 312 = 8. When the point is at (2, 2), its :2: coordinate is increasing at the rate of 0.3 units per second. How fast is the y coordinate changing at that moment? _ A _ _. >< xol7<+gctj A0 04;]- gdx 60.)?“ OLE: ~§OI3 [xt‘lieotfl : "' LLVLNj MWMfl‘ MATH 209 Final Examination December 2009 Page 3 of 3 . [12] 8. Compute the following: g L (a) /(4:1;2—7x)$dx :. /% 344332 , g M (c) [<2m3+7>18x2dm = L WWW) M; 3 16 3/ /L d 3’ d :: gt], ; u, 1., c; 7— , Vt () W I Last-t7 3:]; (Fr?) C =w~7 (e) [84% f ,1, e” 92%, f 3 (f) /<x——3)-4dac = CH) analogy“ 4C [7] 9. Evaluate the following integrals [accurate to 2 decimals]. .(a)/12€x2 ivdm : éexll f—z 8‘32: (6%665 2, 7)::251g5 (b) /4(t‘2+3)dti 2. 2 gatlz: : O (9 [4] 10. A note will pay $25,000 at maturity 10 years from now. How much should you be willing to pay for the note now if money is worth 2%; compounded continuously? 22 000 = P 90'”? ‘ ’O P = 25000 9:9“ 2’: 251000-032 r 2 20,930 [5] 11. Find the area bounded by the graphs of y = 3:2 - 32:; y = 0, —2 S :c g 2. S ngX 59X; éigg} O OCL~3 {4 19‘ "33:0 Xi: 0 c 1’923 Wide, , . z. 2- l £405“)sz + t £0 ($300424 = 12 [6] 12. Find the interval(s) on which the graph of fix) : 3:3 ~ 6::2 + 9:1: + l is concave upward, the interyaMs) on which the graph of f is concave doxxrnward, and the infiec ion oint sl. L /\ £4“--._ ::;+ Ufihfifiwp+.le a. Camugakfe/dbcyu,= ~]~Qfi(2_[)cmp 22:50C. CONCORDIA UNIVERSITY . Department of Mathematics & Statistics Course Number Section(s) Mathematics 209 . All Examination Date Pages Final April 2009 3 I Instructors Course Examiner S.T. Ali, F. Balogh, L. Dube, E- Duma, E. Cohen H. Greenspan, A. Kokotov, R. Mealrns"y M. Padamadan, JIPark, C. Santana MM”— Special Instructions ' ‘ 1> Ruled booklets to be usd. flgaw not? Calcu’bfi‘o" $62-26»— .- e- ‘5 a "W ' 99mmch 13m New 209 W wad OM e'mr- MARKS 1. (a) Find the following limits 2- fl 3' 2 +2~Z~ ( l 5 5‘ (3) 11m M —— _.___ ,fl 3H2 $2+3$+2 22+5-2+Z l (I 2_ -;_’ 2m 33: 2 . (X*L)C_2¥+l> ~22L‘M 2x+( (s) lim M = mg 2 _ 2 x +95 6 chzxx-B) W9. ms — 2 Where is the function. r: -coutinuous? £9 Gym p. ./- Y: 3 > x2 —1 [5] 2. Find the derivative f’(3:) of the functions f (:5): > (Do not simplify) (a) f(x)= 3m4—433+$— 2 19' 2 [Q-XL [EXAM at“? ._ (b)f(x)=—7—+\/E : IN 8 + ifs); 7 ?> MATH 209 Final Examination April-2009 Page 2 of 3 [9] 3. Find (do not simplify): [7] Let=3z4—6:132——7 [13] 5. Let f(:c) =(z-2)(xfi—4z_8) 4 Find ' dx () 821: a y: I. L 932—4 ((3%) (b) .y:ln(3$2+5) 3% [:1 6 X A ' . axles (c) y = (2x? +1)3(4x + 6? 3(WX53M}; (Xz’ew‘zy: 3$CH2¢% Xl’gthBZgiX 8w)? + $3 J}; 12265,sz v g/afitaadz-Zfiz 46/2) :3. {6.5% 3 (7 (d) y z: (4 + x2ln$)3 ( \ » (a) Find the slope of the tangent line to the Curve when a: =" 2 (b) Find the equation of the tangent fine to the curve when m : 2 g a 72002.) + n 400 = xgaef—Hg \ KM: 3x5 lzx W02) 2 6X ~(z (a) the critical and inflection points of f(a:) pfi' XV: D X: the intervals where is increasing and where it is decreasing I » kW. {2 t. X = L (c). the intervals on which f(:13) is concave up and on which it is concave down ((1) use the above to sketch the graph ' . A student center sells 1600 cups of coffee per day at the price of $2.40 per cup; A market survey shows that for every $0.05 reduction in price per cup, 50 more cups of coffee will be sold. How much should the student center charge for a cup of coffee in order to maximize revenue? \G MATH 209 Final Examination April 2009 ‘ Page 3 of 3 [7] 7. Find the absoluteextrerna of the function f(x) : 2:3 432:2 +92: — 6 on the interval H5}- t’ti: 0.. ax‘a i2y+9 = 0 xi tax-+3 =0 @‘Bléwj :0 X13(\>(2,33 a=—u ~“ ( tb”s = ~22 )£0)2‘2‘ 72(3):”.63 ow ong [3] 8. If interest is compounde continuous y and the interest rate is 6.4%, will it take for money invested to double? 6 2 M D O . 05kt» : 29,: A: [e ' V 0.06% [10] 9. Find the equation(s) of the tangent line(s)to the graph of y2 — :ry — 6 '2 0 at the oint s with :c = 1. Z [10] 10. Compute these antiderivativ : (a) /(3$5—2$3~7)dm.é 6 (b)/2:e—7$ d3: "‘ “0% 8W! 2 {132 _‘ Ell ‘ (C) $~3d$ “ (1-:\+C£Q+ l1 5/; [10] 11. Evaluate the integrals: + X (a)/bl($3,_ 4)dx =(%H-%y>(otz .. (rs/2.7 1de awwei [10] 12. Find the area bounded by the graphsof f(:r) = 3:2 — l and y ': :5 e 2 over the interval #235531- ‘ . flew“); xfixwi > 0 7m Maw l 7; + : Xé—-¥_.2“ \ 4 \ g (X X (>0{X “g )21“; «(2-ZAZ]: CON CORDIA UNIVERSITY Department of Mathematics & Statistics Course Number Section(s) Mathematics 209 All Examination Date Pages Final April 2008 4 Instructors Course Examiner A. Atoyan, L. Chekhov, E. Duma, P. Gauthier, J. Ruddy Hughes, T. Mancini, R. Masri, R. Meams, M. Padamadan, J. Park, J. Ruddy W Special Instructions ‘ ' ’ 1> Ruled booklets to be used. {> Only approved calculators are allowed. W MARKS {10] 1. Given f(:z:) = -7 and g(z) == 3, find I") :c——) (a) [2f(a:)+g(x)l (b) Given 11(1) = W ' Find (c) lathe) ' I “0 Eh“) (iii) Find (8) Hm 7254-8 2—»00 52— 5 [12] 2. Find the derivative of each of the following (do not simplify): . (a) y = 5:1:4 + 73:3 =— 102:2 + 47 (b) y : (53:3 + 3332)7 (412:2 + 9x)6 ...
View Full Document

Page1 / 10

sample-finals-answers-m209 - CON CORDIA UNIVERSITY...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online