# problemset10 - MAS 213 Linear Algebra II Problem set#10...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MAS 213: Linear Algebra II. Problem set #10. Tutorial on the 23rd of November. This week’s topics: • Inner product spaces: the axioms. • The norm in an inner product space. • The Cauchy-Schwarz inequality. • Orthogonality. • Orthonormal sets. Tutorial problems: Problem 1: (Problem 6.1 from [FIS].) Consider the inner product space C ([0 , 1]) equipped with the standard in- tegration inner product. Let f ∈ C ([0 , 1]) be defined by f ( t ) = t and let g ∈ C ([0 , 1]) be defined by g ( t ) = e t . (i) Calculate ⟨ f, g ⟩ , ∥ f ∥ , ∥ g ∥ , and ∥ f + g ∥ . (ii) Using these calculations, check an instance of the Cauchy-Schwarz in- equality, and check an instance of the triangle inequality. Problem 2: Let T be a linear operator on an inner product space V satisfying the property that ∥ T ( v ) ∥ = ∥ v ∥ for all v ∈ V . Prove that an operator with this property is 1-1. Comment: An operator with this property is called an isometry. The defining property of an isometry is that it preserves the length of a vector. Rotations and reﬂections are important examples of isometries. 1 Problem 3: In each of the following parts you are given a possible definition of an inner product space. In each part either prove that the given definition does indeed define an inner product space, or state (with justification) which axioms fail....
View Full Document

{[ snackBarMessage ]}

### Page1 / 6

problemset10 - MAS 213 Linear Algebra II Problem set#10...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online