PAP111_Lecture14 - PAP111 Lecture14 TheCenterofGravity...

Info iconThis preview shows pages 1–8. Sign up to view the full content.

View Full Document Right Arrow Icon
PAP 111  Mechanics and Relativity  Lecture 14 Static Equilibrium and Elasticity The Conditions for Equilibrium The Center of Gravity Elastic Properties of Solids
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Equilibrium Up to this point, our study of equilibrium is limited to the  following: Such a situation is, however, insufficient when we deal with the  equilibrium of a rigid body.  The object is at rest or that its center of mass moves  with constant velocity relative to the observer.
Background image of page 2
Effects of Force  F  on a Rigid  Object The force  F  which acts at  point  P  of the rigid object has  two effects: Translational acceleration of  the object. Rotational acceleration of  the object due to the torque  τ r  x  F , where  r  is the  position vector from  O  to  P . Note that in the case when  an object is modeled as a  particle, the force  F  only has  an effect on translation.
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
The Conditions for Equilibrium In order for the rigid object to be in equilibrium, two necessary  conditions are required: Translational equilibrium: the resultant external force must be zero. -- The center of mass of the object has zero acceleration when viewed  from an inertial frame. Rotational equilibrium: the resultant external torque about  any  axis  must be zero. -- The angular acceleration of the rigid object about any axis is zero. = 0 F = 0 τ (16.1) (16.2)
Background image of page 4
Equations for Equilibrium We will restrict our discussion to situations in which all the forces lie in  the  x - y  plane. Forces whose vector representation are in the same plane are said to be  coplanar. This consideration leads to three equations: Two come from balancing the forces in the  x  and  y  direction in Eq. (16.1) The third come from (16.2): the net torque about a perpendicular axis  through any point in the  x - y  plane must be zero. 0 0 = = y x F F = 0 z τ
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Question: Zero Net Torque about  any other Axis Show the following: If an object is in translational equilibrium (Eq. 16.1)  and the net torque is zero about one axis, then the  net torque must be zero about any other axis (Eq.  16.2).
Background image of page 6
Static Equilibrium In general, Eq. (16.1) and (16.2) imply dynamic  equilibrium : The center of mass of the object moves with constant 
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 8
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 12/08/2010 for the course SPMS pap111 taught by Professor Claus-dieterohl during the Fall '10 term at Nanyang Technological University.

Page1 / 22

PAP111_Lecture14 - PAP111 Lecture14 TheCenterofGravity...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online