practice_exam_2

Practice_exam_2 - a g 1 f h Q 7 4 g 1f P 4 g 1f e 8 5 W D 0 1 C 5 8 C F 0 6 D C i 0 A W 8 C 8)A 0 5A b ƒ u ‚ w  y€ y y x w v u t s r q 8 1E 3D

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: a g 1 f h Q 7 ) 4 g 1f P 4 g 1f e @ ) 8 5 ) W D 0 1 C 5 ) 8 C F 0 6 D C @ i 0 A W 8 C @ 8 @ )A 0 5A ) b ' ƒ u ‚ w  y€ y y x w v u t s r q 8 1E 3D 8 C @ 6 6 D 8 p 1E Q 7 ) P 8 F D ) C 5 6 @ 8 0 Q @ 7 8 1 8 D 9 1 E i 0 A W 8 SE @E 1 6 9 ) D 8 S 8 7 8 C 3 I d P 'G 8 0 A ) S @ 7 ) @ 1 7 6 5 ) 1 ) C I R G 8 F D ) C b Q 7 ) 4 g 1f h @ ) I d P 'G 6 @ Q 7 ) 4 g 1 f P @ ) I d P cG 6 @ I eG V 6 D W 8 0 A ) S 1 @E 1 8 F 7 ) C 5 I P G 8 F D ) C b 4 I d cG @ ) F 7 E 7 7 E F 8 T 4 1 Q 7 6 5 8 1 P U D 8 S 8 I d R 'G Q 7 ) I d R cG 7 8 8 3 @ 8 T 1 8 C 5 @E 3 1 I H G 8 F D ) C b a ` P 8 D 0 FE W 8 8 1 Y I & XG 6 @ I H XG 1 8 5 ) W D 0 1 Q 8 1 6A 5 7 ) E 1 1 0 ) ( 8 SE W W 6 1 7 ) 8 V 8 C @ U T Q 8 @ ) 0 A ) S 8 8 D ) I R G Q 7 ) 4 I P G 4 I H G 1 8 F D ) C 5 @ 7 E 6 9 8 8 D C B A ) 0 @ 9 8 5 7 6 5 4 3 )2 1 1 0 ) ( ' & "%%$ #" ¨! ¨ ¡ ¦   £ ¨ ¡    ¨ ¦   ¡   ¦£  ¦ ¡ © ¨ ¢ § ¦ ¥ ¤£ ¤ £ ¢ ¡ 0 [s] S1 S2 S3 S4 S5 2 [s] 4 [s] P 8 D 0 FE q § &     "  7     © ¨ § &  §  ( 7 §"    ¨  ¤  ¨ ¥  § ¨  "  "  § ¤ §  © § i h x g f @ 2 % 1 9 & § ¦ ¥ ¤ £ © ¨ ¥ © 4 § ¢ q § &    "  7 " ¥  ¨¥  § ¨ "  "  § ¤ §  © § i h x g f @ 2 % 1 9 & § ¦ ¥ ¤ £ © ¨¥ © 4 § ¢ q ¤   p  7     © ¨ § &  §  ( 7 §"    ¨  ¤  ¨ ¥  § ¨  "  "  § ¤ §  © § i h x g f @ 2 % 1 9 & § ¦ ¥ ¤ £ © ¨ ¥ © 4 § ¢ q ¤   p  7 " ¥  ¨¥  § ¨ "  "  § ¤ §  © § i h x g f @ 2 % 1 9 & § ¦ ¥ ¤ £ © ¨¥ © 4 § ¢ ut %s %r %¢ e S D dR c Q D c ` G F I D FC S D D b C D a D I S G C Q R X D F C Q R ` B S E X D R TR I D P Q C B S D ` G Y X S G E W E V E U Q C S R B P T B Q S B R C R Q B P C I G H D D F C C G F C E D C B A 0 @ 1   # ¥  9 &     © ¨ ¤ 4 §  © §  ¤ § © ¥   ¦  §  "  © § ¤ § (  4   ¨ ¦  § &¥   ) ¤ &    2  ¦  1 & § ¦ ¥ ¤ 5 0     © ¨   © § ¤  '¥ § ¨  £ &    © § ¤ § ¦  © §   !      © ¨ ¤ §   & ¤" ¨ §  © 4  ) ¤ & & ¥ ! § ¦ ¥ ¤ £  ¦    %     © ¨ ¤ §   & ¤ " ¨ §  © 4  ) ¤ & & ¥ 8 § ¦ ¥ ¤ £ &     © 4 3 &     © ¨ § ¦ ¥ ¤ £ ¤ 4 §  © § ¦   4 §  7 (" § ¨  $  & ¥ 6 § ¦ ¥ ¤ 5 0  ¨  ¤   ¦   "  ¥  ¨ ¥  § ¨  "   © § ("  ' ¥ §  § ¥ "  #   §   ¥ § &  ' ¦ ¥ " " ¥ 4  4 3 2 ¤ § 1 & § ¦ ¥ ¤ £ § ¢ 0 &     © ¨   © § ¤ ) ¤      (  ' &¥ $  % $  © §  ¦ ¤"  £ #   ¦ ¥"      !   ¤     © ¨ § ¦ ¥ ¤ £   ¦      ¤     © ¨ § ¦ ¥ ¤ £ ¢ A ) 0 @ 9 8 5 7 6 5 4 7 6E @E 1 6 9 D 8 9 0 X W 6 8A 9 E 5 7 E D ¡ h C- If you are allowed to arrange the four point charges in a two-dimensional arrangement (x,y) with the charges being at the corners of a square, can you set them up such that the potential difference Vab=0 at the geometric center? Sketch your charge distribution. ¤  # ¤ ( ©¨§ 4 ¤"  7 &     © ¨  ¤ § ¦  )   ¦     £¢ q§¤¦ (© 4  ¤ (© q   ¦ ¦  )  © ¨ # & ¦ ¥ &     © ¨ § ¦ ¥ ¤ £  © §   ¦     ¤ §  " 7 ¥ & & ¤ £ §¥ & ¡ %r q ¦ ¤ ¥ §  # §¥ &  © §  §  # "  '  ¤ §  & # # ¤ ( ¤  @ & 9  " # )  ¤  © ¨ ¥ © %¢ 0 ¤   p &¥ @   § ¦  ¨ ¨¥  §  ) ¤  9 & &  )  ¤   § ¦  ¨  ¥  © § §  " ¥ § ¦  § ¤ £  © § §  © § &¥ $  % $  © §  ¦ ¤"  © ¨ # & 3    ¤      © ¨  ¤   © §¥  © ¨   3 &     © ¨ § ¦ ¥ ¤ £  # ¤    ¦    ¢ A ) 0 @ 9 8 5 7 6 5 4 7 6E @ 0 T E D @ 1E Q 8 FD ) C b R ¥ 4  © § ) ¤   (" "  ¥    &  ¦  § $    ¥ 4 § ©  ¥   § & ¦ ¥ © §  § ¥ ¦ ¥  ¦ ¥ ¦  § # ¤ 7   "  ¥  ¨ ¥  § ¨  "   © ¤ % © §   © &  © § ) ¤    ¨ ¦  § &¥   © §  ¤ § ¦   ¦  £   ¦ ¥ & ¥ §   © &      © ¨ (" )  ¤  ¥ ¦ #  § ¥ ¦ ¥  ¦ ¥ ¦   ' ¤ 7   "  ¥  ¨ ¥  § ¨  "   © ¤ %  &  ¨   # &  ¦ ¥ § ¨ #  ¦ ¤ ¨ ¤ §  " # ¨ ¥  ¦  £   £  ¦  &  ¦ ¥" " ¥  ¨¥  § ¨ " £ %  &     © ¨  '¥ § ¥ & ¤ £ ¤ § &     © ¨  '¥ §    ¦ ) ¤   ¤  &  ¦ ¥ " " ¥  ¨¥  § ¨ " £ %  &     © ¨  '¥ §    ¦ ¤ § &     © ¨  '¥ §¥ & ¤ £ ) ¤   ¤  &  ¦ ¥ " "  ¥  ¨¥  § ¨ " £ %  @ &     © ¨ "  ¦ ¥ &  ¤  § £  ¨ $  9 &     © ¨ §   ¦   ¦  §  § & &  ¦ ¥ " " ¥  ¨¥  § ¨ " £ % ¨   © § ¤ © ¨   & & ¤  ¨ ¤ § &  ¦ ¥" " ¥  ¨¥  § ¨ "   ¤  " 7 ¥ & & ¤ £ &¥ %7 %   © § ¤ © ¨   & & ¤  ¨ ¤ § &  ¦ ¥" " ¥  ¨¥  § ¨ "   ¤  " 7 ¥ & & ¤ £ § ¤ ¦ &¥ § §¡ ¡ ¢ @ 5 8 D D 6 5 8 D ) 1 @ 7 8 V 8 @ ) @ 1 C 5E C ¡ A ) 0 @ 9 8 5 7 6 5 4 1 8 7 E 2 QA 8E 5E D @ 5 8A Q 7 ) QA 8E 5E D @ 5 8A P Two charged objects are very far from any other charges. Mark all statements which complete the sentence correctly: The electric force between them … 1 – Electrostatic force, conceptual ABCDEFGH- doubles, if the distance between them is cut in half is cut in half, if the distance between them is cut in half quadruples, if the distance between them is cut in half is ¼ th as large, if the distance between them is cut in half doubles, if the charge on one of them is doubled doubles, if the charge on both of them is doubled is cut in half, if the charge on one of them is doubled is cut in half, if the charge on both of them is doubled  ¤ ¥   § ¦ ¥  © § ¦ ¥ ¢ § ¦ ¥ ¤ £    ¦ ( § ¥ & ¦   § &  §     © §¥  ¨    # &  © § ¦ ¤ r § ¦ ¥ ¤ £    ¦ ( § ¥ & ¦   § &  §     © §¥  ¨    # &  © § ¦ ¤ s § ¦ ¥ ¤ £    ¦ ( § ¥ & ¦   § &  §     © §¥  ¨    # &  © §   ' ¤ (" )  ¤  ¥ ¦  ) # " ¤ '  © § § # ¤ ©  # ¤  © § (" )  ¤  ¥ ¦ %£ % £ ¢ ¢ %s %r %¢ %¢ q § ¨  ¡ 7 ¤  © § ¦ ¤   § # 7 ¥  § &¥   7     © ¨  © § "" ¥ 4 4¤ 0 1   # ¥  ¦ ¥ ¦ 4 ¤ © &  £  © &  " #     ¥  © § &  © §  © §   £ £ ¤ ¨  ¤  ¨ ¥ £  ¦ ¤   ¨ " £ &¥     © ¨ ¨¥  § ¨ " £ A ) 0 @ 9 8 5 7 6 5 4 7 6E @ 0 T E D @ 1E Q 8 FD ) C b R   ¨ § ¢ ©   ¡ £  ¢ ¨ ¦ ¨ ¤ ¤¡ £ £ ¢ © % ¨  ¦ ©  § ¤ ¥  ¢ $ ¥  ©  ¢ ¨ ¦ ¨ ¤ ¤ ¡ £ %  ¨  ¦ ©  § ¦ $ ¥ ¤ ¥  ¢ ¥ ¡  © § ¡ ¤¡ £ ¥  ¦ ¨ £ ¡  ¢ ¥ #  ¨  ¦ ©  § ¤ ¥  ¤ ¨ ¨   ¥  ! " © ¨ § ¢ ©  ¡ £  © £ ¢ ©  ¨  ¦ ©  § ¤ ¥ ¢ ¥ ¡  © ¢ ¡   ¥ §   © ¦ ¥ ¤ ! £ ¢ © ¨ ¦ ©  § ¢ ¨ ¨   ¨   ©  ¤ ©   © £  ¨ ¡ ¤ § ¡ ¦  § ¨  ¨ ¨   £ ¢ ¡    ¢ ¨  ¨  ¢ © ¦ ¦ © ¨  ¦ ©  § £ ¢ ©  ¨ § ¢ ©   ¡ £ ¤ ¥  ¢ ¥¡  © ¢ ¡   ¥ §  © ¤ ¥ ¨ §¦ ¥ ¤ £ ¢¡ q5 9 64 8 8 7 ¤ &  © © ¨¥ © 4 ¦   ¤  §¥ ¦ ¥ # ¥" ¤ § ¦ ¥   &   ) ) ¥ ¦   7 § & # §   ©  '¥ §  ¥    © ¨ # ) 4¤ ¡ &  © §¥ ¥ 3 5 s 64 3 3 1 §   '  ©  ¤   © § &  ¤  & & ¤" ¢%¢ 05 s 64 3 3 1 §  &¥ 5 ) 4 1 © §  ¦ "  ¦  5 ) ¨4 31   §  ) ¥   ¤   £ £ ¤ ¨  ¤  ¤   ¨ ¦   ¡  ¨ ¢ § ¦  2   ¢ ¥¡  § $ £ ¢ ¥ §  © ¨   £  ¦ ¨ £ ¢ 1 1 0   ¢ ¥¡  ©¡ £ © ¦  © ¨   £  ¦ ¨ £ ¢    £ ¥¦ ¨ ¨¦     $ ¥¦    ¥ ¤  © ¨ !     !   "  ¨¢    ¨ ¢¡  ¢ ¨  © ¨  )   ¨ §  §  ©   ¨   !   ¨ ¦   ¡  ('   ©¦  ¦ ¤ ¥ &  ¨   ¨  $ ¥ £ %  ©   $ © $  ! # #   ¢ ¥ ¡  § ¨  ¥    ¡  £ ¥ ¦  ¢ ¥    " #     ¢ ¡  ¦ ©  £ ¢ © ¨ § ¡  ¢ ¡  ¨   ¢ ¥¢ © £¢©   ¢ ¥ ¨ ¦ ¨    ¨  ©  ¥    $ ¥  © ¨ § ¡ ¥  § ¨   ¡  $ " !     ©¢ ©  ©¨  © ¦ ¥¤  ©  ©   © ¨ £¡   ¨  ©  ¤ ¥ ¦ ¨   $ ¢ © ¤ ¥  ¨¡ ¦ ¨ ¢ ¨ §¡  ¨ ¢ ¡ © £ ¢ ©  ¨ ¡ ¡ § ¥  ¨   ©    ¦  ¨ ¢ § ¦ ¦ ¡ !  ¨ ¦  ¦£  ¦ §  !    © ¦ ¥  £¢©   © ¢ ¡ ¤ £ ¢ ¡ ¤ %  © ¦  ©¡ £      ¦ ¨  ©   ¢ ¡ ¡ ¥  £ ¨   ¨¦   ¥§ £¢© £¨ © §¡ ©  ©  ¦ ¨ § § ¥  ¦ ¥ ¤£ ¢ ¡ q  ¦ ¥ ¦ ¦ ¥   7  © § §    # & &   £  © § &   )  &  © §  ¤ 3  4 ¤" 3   © ¥ © &    © §  ¤   # & &   £ "  ¦ ¥   © § & ¡ %s q  ¦¥ ¦ ¦¥   7  © § §    # §    £ )  §  © § &   )  &  © §  ¤ 3  4 ¤" 3  © ¥ © &    © §  ¤   # §    £ )  § "  ¦ ¥   © § & ¡ %r e XSG " Q Q D I B ` P T B C S R B P X S D D F C QR $ Q Q D I B ` P TB C SR B P c SR C ` G C Q D FC # Q Q D I B ` P T B C S R B P X S D D F C QR " Q Q D I B ` P TB C SR B P c SRC ` GC Q D FC C G FC F I ¦Q QDd` ¦I ` ¦ B © b G` ! ¡C SR 0 (" "  )   © § ¤ & ¥   & &   £ ) ¤ ¨ & ¥ &    © § 3 (" "  ¦ ¥ 0   %s %r %¢  ¤ ¤§ £¨7 (" "  ¨ ¥ §  7  ¥       4 ¤ " & ¥ &    © §  ¤   # §    £ )  §  © § 3 § $  0  ¤ ¤§  ¤ ) ¤   (" "  ¨ ¥   7 ¤ & ¥    ¦  £ $  & ¥ &    © § 3 § &  ¥ ¤ ¤ ¤ § § ¨  £ &   © §¥ 4 &  '  # ¨  ¦ ¥ 4 ¤ " " ¤   © § 4     ¦   ¨ ¦  § & 7 # &   ¤  ¤ 3 ¤  ¦   ¤ &"  )   © § ¤ &¥  © § )    ¥   &  © £ % £ ©§ ©¨§ £¢ %¢ q5 ¤§ 5 s 64 3 3 1 ) ¤   ¦ 4 ¤  & " ¤ ¤ ¨ §¥ ¦  © 4   ¦  © ¨  ¤    £ £ ¤ ¨  © §  ¤ © §  ¦  "  © § &  ¤  © ¨ # ) e X B ` D F C TB Q D C G¥ P X S D ` G¥ ¦ I `R I S D FC F c ¦ B ` FC ` ¦II B ©¥ S B S G I D c S G FI HD C G D σ = 5.67 ⋅ 10 −8 e S BRC G ¦¨ D D FC SR § QC R ¦ C F cR ` D F C SR ¥¥R T ¤ XSG U £D DQ α   U £  ¡C SR 9 64 8 8 %r 4¤ SR ¢ ¡C ...
View Full Document

This note was uploaded on 12/08/2010 for the course PHYSC 1220 taught by Professor Feiguin during the Fall '10 term at Wyoming.

Ask a homework question - tutors are online