5 as distribution parameters a random output

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: T01)) + A1 T 2 4ω ∫ T01 t − T0 cos(ωt ) dt τ ∫ exp − 2V 0 A1 = T A1 = ∫ T0 2V 0τ T01 − T0 cos(ωT0) + ωτ sin(ωT01) − (cos(ωT01) − ωτ sin(ωT01))exp − τ T(1 + ω2τ2 ) Third Fourier Coefficient: T ∫ 2 b1 = Vs( t )sin(ωt ) dt T 0 T0 T 01 2 b1 = Vs1cos(ωt )sin(ωt ) dt + Vs1cos(ωt )sin(ωt ) dt + B1 T T0 0 Vs1 (sin2 (ωT0) − sin2 (ωT01) )+ B1 b1 = 2π ∫ 2V 0 B1 = T B1 = ∫ T01 ∫ exp( − T0 t − T0 τ )sin(ωt ) dt 2V 0 τ T01 − T0 sin(ωT0) + ωτ cos(ωT0) − (sin(ωT01) + ωτ cos(ωT01))exp − τ T(1 + ω2 τ2 ) Figure 226.5 VLOAD with Capacitance of 1E-6F ANSYS Verification Manual . ANSYS Release 9.0 . 002114 . © SAS IP, Inc. 1–527 VM226 Figure 226.6 Plot of Fourier Series With Capacitance Figure 226.7 VLOAD With Capacitance of 10E-6F Results Comparison Target 42.9834 0.9997 0 0.0151 0 67.5 67.4920 1.0001 A0/2 50.7897 50.7893 1.0000 61.7634 61.7542 1.0001 B1 10.3401 10.3463 0.9994 A0/2 105.4741 105.4266 1.0005 A1 13.8684 13.8831 0.9989 B1 1–528 42.9718...
View Full Document

Ask a homework question - tutors are online