This
** preview**
has intentionally

**sections.**

*blurred***to view the full version.**

*Sign up*
**Unformatted text preview: **servings) us unknown. 7. Sample size, n=31 Sample={x, x1, x2, x3, …} 8. Sample mean X_=99.3 9. sample standard deviation, s=41 (X1-x_)^2+(X2-x_)^2….(X40-x_)^2/40-1 10. Confidence level is 1-o=0.90 and 0.95 The 90% confidence interval for the unknown population mean U (the unknown average calorie reading of all 8 oz servings) is given by: 99.3+-(Z0.1/2)*41.5/sqrt31 99.3+-(1.645)41.5/5.567 99.3+-12.263 87.037, 111.563 we’re 90% confident that the unkown populaton U (the unknown average calorie reading of all 8 oz servings) lies betweem 87.037 & 111.563 1. X_+-Za/z*S/sqrtN for n>30 2. X_+-(t a/zn-1)S/sqrtN for N<30 1) 1-o=95%; thus, o=0.05 2) the maximum error of estimation is E=1 3) population standard deviation, O=4.8 N= (Zo/2*O / E)^2 (Z0.05/2*O / 1)^2 (1.96*4.8/1) ^2 =88.51 = 89 ^p+-Zo/2 sqrt(^p(1-^p) / n) N=(Za/2)^2 ^p(1-^p) / E^2 1, 1-o=0.95; o=0.05 2. E=0.03 Part A. (Za/2)^2 ^p(1-^p) / E^2...

View
Full Document