IMG_0008 - f (r),g(r) e A([O.f]). Find an orthonormat basis...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
) v= .> n s-3 - 309 Quiz 8.3 Narne: Section number: (t) fapts] Let V be a finite dimensional inner product space. Give the definition of an orthonormal basis of V: a.3e+, Le,. ,a3 s.e. d,,. ..,a spq-nV,en e linaarll ind, a.nd r-+rC-r-'.t <e.,€-3)= tl lf.J r=J (2) [6pts] Consider C([0.1]) as an inner product space via the inner product: -- f (r),s(r) >: [' ,f @)n@)0, JO
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: f (r),g(r) e A([O.f]). Find an orthonormat basis of the subspace I4,' : span{ 1. r, et -'- 12} . .5 l,t Q,= m'l= I-5 {r= 6n/dor-, } t, 1$o.td, )= Sj ^.ro K= +x,Rlj =t/a_ ' X' t/A =&gt; ll i*ll. l-s Er'va ats (z- A dr - ,getd.7 d, l-.&gt; Gtt 'Ys ', v* 5 4*, $jc*-ta\tr=m =' J'ha= +t ! Ira A,li D.rd*tE1'e { r, e ili(z-lA\ , .,} basls =...
View Full Document

This note was uploaded on 12/11/2010 for the course MTH 309 taught by Professor All during the Fall '10 term at Michigan State University.

Ask a homework question - tutors are online