IMG_0004 - 3 09 Q uiz 4 .2 Nanne: Section number: ( 1 ) L e...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 3 09 Q uiz 4 .2 Nanne: Section number: ( 1 ) L e t V b e a vectors pace,rr,...,vrr} e 1 / , a n dw € V . { (a) [ 2pts]D efine:w i s a l inearc ombination f { v1,...,vr,} i f: o fi=r,7 ,+...+G% , (b) f Zpts] efine: pan{v1,..., v",} : D s F ief R- u t giEn r,f, + "'* ( -,'V^ F ie lQ. t ) t t i E n , (2) [6pts] Let li be a vector space and u, v € V vectors. Shorn'that span{u,v} : s pan{2u + v , u - 2 u}. Db s pqnt 6,V1= t u j,+ oi* r SFqn at" i , d - a il , c ,(Ats i \ t c a(6-a i) L v = ( e<,+c)d + ( c,-ecJil = q t + rei let Q.c,*Cg= \ cLnd c.,-t4r-: 1.. A s 'Fan l o,or e $ anlq"*t q ) d . * ( r"-ar) f = r ,d, + f i'?r- :"r+s ?qrr6, i \ + t F ors oma t ., r .,E IQ s s go", a 6+i , d -a0] t * s p"" l d, U 3= s ry..n o+i , d - a t] Ia ...
View Full Document

This note was uploaded on 12/11/2010 for the course MTH 309 taught by Professor All during the Fall '10 term at Michigan State University.

Ask a homework question - tutors are online