This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: ZS Wmt‘lég , Math 2015 Applied Multivariate and Vector Calculus: Test2 Friday October 9, 2009
10:30am to 11:20am Name: gOLUT 1,0935 Student Number: Instructions: Complete all 5 of the following problems in the space provided. Notes and
calculators are not permitted. All cell phones and pagers are to be turned off. 1. The radius of a right circular cone is increasing at a rate of 1/2 in/s while its height. is
decreasing at a rate of 2 in /s. At what rate is the volume of the cone changing when the
radius is 12 in and the height is 10 in? (Hint: the volume of a cone is V = 7rr2h/3). a Li
V:'LTU\‘7'\rt grads:
3
CW Tl“ iLr‘lﬁ tr 2
a =  = __ thdc c Ala ’—
db 5 at sl 3; J“ a} CD
(TWUA Al): +1 \3 (lk‘="2‘_‘:’1 ®
at: Z 3 dt 3 u
l%
,_.
c
F
6°
:a
U‘
\_/ (l " 56w h‘nS/3 2. Find the limit if it exists, or show that the limit does not exist for cases 5 writs a (a) lim xycosy 1'4 _y4
d b 1
(1: y),)—+(00 )3x2+y2 an ( ) 1m (2: ryHOO) 1'2 + 1/2 (0) Le]: 1901.53: X30255 So ?LN,)L)—’> \ 0A (1,3L)~3W,o) . mg ’m hm owe mt 14:34~ MG)
(53 Lo’c yang}: Eddy
5L1¥KL r (28’ 17/30‘74/1) LEE/>46)
Ms &\W\ #01”): 0 (plus) 3 00,0) 6 ' ® 2 1w?) “Q3 3. Determine the tangent plane and normal line to the surface S W 1L5 $3 +3rzyz + 2113 — Z3 2 ‘15 at the point (1, ~1, 2).
Lalo Fungﬂ): 13 + he? + 2:33 ~— ‘13 Tu mode/"r pm act FW'JF Fp 010mm cs
awe/n Ebb VFW». ‘6“:5'0‘) ., LJ‘Fo 1 = 0
(ANN F: 0M5.%). mepvh M ﬁendumrz
VF = (%xz+3\3;)1 + (311+ bBWSJr Birgi')? “(D Hm vat—m) ~= (Maxi + (WAS HJsmi = «men’s—1512 ——® 3mm, ($411,): (l"2‘3*‘3%—Z> (ML Wﬁw‘l‘ p‘MLfS (—3,2.Is)o(1~\,5+1,%—23 : o “(D
~3(&I)+n(5+0~1§£%~23:° Kg)
{’WJMU I M Mrwwdl lime vs @9933 written as 3.1:): W : afi} 3 4. The function f(:c,y) at the point (1, 2) has a directional derivative equal to 2 in the
direction towards (2, 2) and equal to 2 in the direction towards (1, 1). What is the direc
. _ ‘. . . . . ‘2 . q
tional delivative in the direction towards (2, 3). g 5M0“ k5 ‘ A LCt E: [2432 1 (21): ; 1 $0 WM viedb, i's  " A
_. EZ‘ : —A
“V“
A
W, N!— chw‘ DQ‘HML): = ’L'Vﬁlm‘) ”’0 U
r—4
3"
4—
N
r...)
H
l—P 5. Consider the function z : f(:c,y) Where :L’ = 5 + t and y = 5 — t. Show that
Emarks ,
<6z>2 _ 82>2 _ azaz
a (87; — 8—55
33 ﬁt Chum \Zvlu
bl: [email protected]_¢+§%:?§ ~© (OS 2)}, ‘Dﬁ ‘93 )$ 32: 212.22»: 222:: __
'3‘: Blobtfbgb‘l: (D Smu, x: $44; M34 3:9‘t git: i 33} : 1 9t 9% (D 2‘5: ‘" 2H ' \ “0t 9% Hand, {a}; z 2} + '33
25 31 53 L9
(Di: 94.1; "' (a?
D» D» DI;
Thus Qk‘Qg; ~(D_&+‘Q} [8}:2}
79$ 3*: 7”“ 93 ...
View
Full Document
 Fall '09
 Haslam
 Math

Click to edit the document details