hw7solutions

# hw7solutions - sa/wl—fon ECE604 Homework 7 Out Tuesday...

• Notes
• 15

This preview shows pages 1–15. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

This preview has intentionally blurred sections. Sign up to view the full version.

This preview has intentionally blurred sections. Sign up to view the full version.

This preview has intentionally blurred sections. Sign up to view the full version.

This preview has intentionally blurred sections. Sign up to view the full version.

This preview has intentionally blurred sections. Sign up to view the full version.

This preview has intentionally blurred sections. Sign up to view the full version.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: sa/wl—fon ECE604 Homework 7 Out: Tuesday, March 1, 2005 Due: Tuesday, March 8, 2005 Problems given by number are from the text by Ramo, Whinnery and Van Duzer (3rd edition, 1994). 1. 3.18b 2. See below 3. See below 4. See below 5. 5.2c 6. 5.2g (Note: for your solution you may assume that the material between the inner and outer conductors is air.) 5 7. 5.4a 8. 5.5a 9. 5.5b 2) In the magnetoquasistatic approximation to Maxwell’s equations, the displacement current is assumed to be much less than the conduction current, so that Ampere’s Law may be written: VXH=J Assuming that this approximation holds, show that Maxwell’s equations for a spatially uniform medium with finite conductivity 6 lead to the magnetic diffusion equation, written an V2H= o— ” at Note: You may assume J = GE and B = uH. 3) A spherical conductor of radius a is exposed to a uniform time—varying magnetic field in the z-direction: B(t) = B0 sin cut 2 It may be assumed that the radius a of the sphere is very small compared to the skin depth 5, given by 8: 1/(1cfuo) where 0 is the conductivity, f is the frequency, and u is the permeability, assumed to be ”0 everywhere. Derive an expression for the time-average power dissipated in the sphere. Conducting sphere of radius a -Hm 4) Consider a simple parallel plate capacitor connected to a sinusoidal voltage source V(t) = V0 sin out, as shown. The radius of each of the round conducting plates is a, and the separation between the plates is d. The medium between the plates is a perfect insulator with permittivity 8, and permeability no . Let d<<a<<}t, where A is the wavelength that a freely— propagating wave at frequency 0) would have in this dielectric medium. (a) Using one or more of Maxwell’s equations (in integral or differential form, your choice) determine the D field in the region between the plates. Express your answer in terms of V0, (1), a, d, 8, no and/or k. State all assumptions and approximations that you are making. (b) A time-varying D field is associated with a circulating magnetic field. Show that aVOwr the vector field H in the region between the plates is given by H = cos on E) where (i) is the unit vector in the ¢ direction, as shown on the diagram above. Show the contour, surface, or volume that allows you to make this determination. State all assumptions and approximations that you are making. (WM> <WE> magnetic field energy and WE is the total electric field energy within the capacitor. Write your answer as a function of Mo, 8, a and k. Discuss the relative magnitude of the ratio. Under what conditions should your results be regarded as valid? (c) Determine the ratio of the time—averaged energies , where WM is the total (d) Determine the instantaneous Poynting vector within the dielectric medium. Discuss the meaning of its direction and its dependence on t and r. a» gem! we‘va‘” #2 4 3 '0) ‘ .2 ”a ‘ .....TA .45 7511/44? wF§w ’5. (4.7 34/0135“) 42 52?. A 5303/9... 74W - .. . ..m. rwﬁcoi’ama .t. .49}. (5.49125 3.3.x..- Ff." «1% 5.7 54:3,?!” One! 347/“ n 4,, 47,2112), /4,.. . f;,){ @(5 ’°) 3 26‘" : . .. .. _. _ ....4PL>= .9. [Ha/2' I25)_ ._ . 3.13» A 3. 2.3.?25533. #2 swfmwsﬁwa pf, FW- Jﬂﬁ..’4¥’£ H) J? 4359.?“ %§ uwcﬂ Came/02.7345 I: ““wAl/‘L J10“ [.3 ﬂL leri, ‘4LU. ”711?. 516%” ~ (3.... “"§>,m ; . - J, .J z >. 2 2—5. [33’ S .-f’? 7‘3 .2 ”‘31P. I _ ii. ., .-...C+fu3 3,5. yamst‘d) (P’Q’LNA‘J— Mew)“ . . JEJ. “Q“ﬂ‘ h—d’kaﬂ 2) In the magnetoquasistatic approkimation to Maxwell’s equations, the displacement cun'ent is assumed to be much less than the conduction cun‘ent, so that Ampere’ s Law may be written , V X H}: J . Assuming that this appmxi'mau'on holds, show that Maxwell’s equations for a spatially unifOrm medium with ﬁnite conductivity 0' lead to the magnetic diffusion equation, written ' . :aH V2H= 6— V at Note: You may assume “J: 6E and B: muH ...._~,' ”VLB _+VCV»M WT" Fromm 1’GAxo-O‘1) (mu «mm—4. nb—‘ww-m‘I—wwuw—«M ii 3 E m<:-—agsuimam.amt-aim“nu'~vm~m-b=~mw\mﬁrwmnn~anu w, -:l m... ”WNW”; m‘mm—V.“(”gummy-axe N, ... 4-,. ..”4.44;...W,_._...w.....—~...“mmmmmmwuywmmmww.y_4_..~_._...__.F-...4.4..._...._.. . . ' . J ‘ (Nt‘lVM [4'7 j‘ﬁ’tkﬂa‘tJ‘QﬁﬁU I/LQ/MOHA {wﬁg I‘c(o~+(4' gm“) ‘Hwaj‘ "(1v WWW ‘5 ICU/“Q “*1 cm \‘3 much smdﬁmw Be. :1 \$9 Wdcaﬁ‘ LIA-L W Lee\xwop Ing‘eI IV}, ‘H'k Cg‘CUIM’II ‘ m ”vauwmwmmnmv..- n.u...vmn,~.-,-... Twicxmo game out; §2 45 a..- {3,625 FCB .CW‘K‘M LNL' (4UP. CLW‘CXL.5 Mum, min <I:Q\ kiﬁoplgui (“IISme f. L¢ 2275/35; —w50mswf [Fr 5/116) Ed: —ogocw(a+) (by/”3) M‘)Py\ﬂn.m~|w~;\~hrrmm “his“:..........,...&.........4...-...'4...».~«~u;«~—,w.waaﬂgwgwwwww.w~.mnwN-Mn-wﬁwmvw~;~wwwm“.nquha‘hNu. - w..._~..\....\-.«.m~.m l/MWC‘s/LM/”MVOW [.0 1P>k €1>JV ~s...__»,....M.-_‘-.._.;mu...-.~.;......w .2, '- I 9. ) __ M ..., _~. _(.~.. ”44......“.4..,w—.~._4-,...A~........._....44...” 7.44.... n..- 4 P,» :3“) 3:» f {Tc/afarﬂw/Lii L . 1 I ~ 3 (£63 , (“f/f) 07%)- *II ...A .. . 3w . a“ z. ”a M ,: , .4 “a. ,7. 3 u. //o. , . F ,a . a K 3 ,% 6. _ \$4 .6 m _ c7 3 s 3 f. 4 ‘ 4. a. . .3 m a, M .3&. G {W PM . w c... V a _. .vr . , 3..1.I:z.§.a..§:.t E1:3liniaiaziuix.Esééﬂsu~331xuiurxix E‘sixxeég. 3:3...ilvllil :\,§§.é.xsi..1i2!§2§§.l2.41.1135???» (6525.; 5.3.5.. 7.. .51“. in«'-Writuan-a*Jédéau'ii‘e‘v’vﬁnéwnthJLwif:navamm;v':u-JJJLpﬁigﬁﬁ\$€4=2§i§§€imégwnvhséwé"mvéui~kaﬁnlwﬁ4:12.; HMWmunwwmrr—um‘wtmm mu 44.444.444.44. mwknmhﬁwmi—mbﬂziwﬁﬁﬁ—i 4 ____...4..._.f.._._ , 4.4—” . 4» Eé> "gt/#mglaléa 455'“ ISM“ #mjm‘j #4.?ch m 6" Jhngoé- M q”. 9 Ilk. ' “ "'5“ "G ' '; ' ff 5" 2 3 7&4 D17. 3 ’37 oak/In V’> (lbs/Mat. 0/4 07%“ @dmﬂfrlm M 4443:4444. 5 M 41:: 745.; van-2447447: 4A4 (4.441; , 50 (44 Tim My 4m#_ W A7 QJéhZ“ ‘VMIjIkJ, 8 TAIKS IS ,CA' .oeecjacw- 7045) rhﬁé W” [@QS)_E:4+1~kS_. CQS ' “meAm , cw. 44+ 4471 4 4,444 7444‘ “3"“ #1741647 A44 ﬂaw/é. zﬂégﬁé‘; {4/‘4094’rcgﬁ NQNZ MIs/Iacwé rammed 5 ﬂea/66' 44.2.. [yogi/6W ' . 144;}: fwd; ﬂea...» (301 1 do .5997) f%d%- SM} ﬁt»; 4") M54144.) 04‘4": r“ 7““ 4&5 “IKE?" Mam éU-L mum» W é 44'va mlncfl/C‘LJ7‘M " W n5 6 (a 1’ Induce» apnea-F144 A 7% Wynn—PF 44444 7%«% \$444,445 L44) 73¢“ 0/4444“, 4.4. SIM Weds/k 474K (3...; (1%; 25/ch #44,. TTA/UJ/m 4/4 4625 4/Mw4ﬁm ; 4444 .444 Mala/444:.) . é444.4% 445 4445444 44444; 4444 _: 01L [Aﬂu— Q A»: /- 73/ \$444 [pan/W p/Jz Cayw/A") 4pc Ijﬂml’lj )Cr/lehj 74‘1‘6) m U 3 fl as § ,' : .. y :3: ‘ § “a \/ k n 42" \.« mnyVm.wn—a-‘~.—em.,g_.ma...—.»._.:,—,.».—..—‘..M-.-§.w,m—..YM<,N..,_t.-z“1‘«hwah-m. 4m» ’ ' "3"?" 4 " LW£> 5" WLMQSM’W (.4 4796: '2 (im‘A) A" ) MAM. A124: _ . ﬂk LAW/5% if a ﬂ/auu. Wm «ago/J 5a“ ﬂ/Lo/jcgé/véﬁj (My . ‘ L3 ,4. iMclfé/M 4a; #74 M 6. 77w: f. ' 750‘ 44.4.; @4744, <wM>/(Aué,> 44/ 77 [5 7‘31» Myw/‘wdi 414-va J fzom Ja/ailima Fm 4wM>/<w> #44605 - m «R 40% I’m/1+2. /W MJO’M MM: 91% [Emu/L: (/1 JIM ”44174944 4246:71_ ; EfuIVW/W’Lj, w ' 444A, 60L Cm Qavé’é xf/un—a 7%... 53/447444! Vm,z,é~m 4' modetm act/7’ ”ﬂu; mica/m; )4 Maéo‘ﬂ/IJ 6774:474/4-31- 535,144 7744» [ﬂit/79¢ W/a7ém x3 4,“ , . , . . L- [4777M MM» OM74“ ‘ W 4IWA> '5 Kid?" (7) I) , 4 , 2.7)?) , 4 3/ ) (4A4 v 0/173: 75 ﬂW/M/“IMM ”0&7? v. wu..‘.,.,........N...—..4.....m;v “MN .._, __..,~.;....M _-_.4......M__;,....__\mw..mwr,w--_.~. w m....mw-gr...,...-m.,....- _......~a_.‘.m ......~ ”um-Hm .,F.. New..- .,."a;,—a..._qn,”_.w+-~4_.—;~n‘—.«_WW“- mug-4.:;.;.;.;...:.-z:,.-;.v.;q-w.;tv.~.,.-M;....4_.c;ww Jaw~waw1~MJEQ~JKL1LQA\%\‘W%M;<r~hziéu<a;aLM.“=-.—:Ju;>«wﬁ~‘;&f “vhf—",6”, ,‘_,.._.»..,..ww.n,......V_N‘....,,.-W‘,...,.~..,.._ NW...",..,,.,.,.,.m.,.¥.. u-zxnzxcxrww "";:-.:;.a.-;::.;2-...;:L;.:;..;.::s~mm — .-.”w;;A:::.s::,1..;;w"x:.::;a4:;.; _.._q_wn_%.~q__,+..ﬁ. 256T: CV0er'C§>W}.S,“w£ C—V-j 2.13”- .‘ Viguyv f'F»(¢e..o.cl)a_{m Jmc‘ﬂ SWKWJUJ/‘J’eé 11%;“ Cid n/ [”466 (V:— 08) “(oak tFMW‘p—QNWV V6 Paw-WV; 39W ’(ﬁk ks» Cam {Gal‘s Qw'f’k‘j‘ @E‘ﬁ_*ﬁ' :V i523“; 3.66:6; 7'1) . "1'f _ fw—wws,+—Lpéxz~ +24» sswtjimm ~44 44» - 1.1%;‘+‘N7~‘M?¢F5-NM%W37‘ 34"“? 9; “'S.‘I"“"\$°“°‘T% ' Want. E-mcogg—z—Luwwwhx ”WW EM» ' ;: 7%” m M'stwwm M; “MM +‘*WW ' PM Asia chi?” 045% Wm MpvsfaI/Lw <3“? w, TIME, I3 IM¥MchP\$ @Vrcef‘{CJomx) [09+ (‘5 Oumgl‘sw at?!“ " -:‘.4L.25 awe 13-54% ,. «,4- (‘4; 5795 ) m_%t§-'M97 ’4 +4” «as NJ. j am“ ﬂea ma 74€?/4M.I'71« . ' .1 5.7.0.: 13er 4m Maw 09 gm «5;; whoa: v: .1. = .L. 41w \snes 'wmx'n‘mo: Mend-(meg. ne%\§=&.\\o\e., . it = .3— :- \. = -\~ = E. . v‘c. w it, De. ”Q Q ‘5; Q—m- Pamkkk m‘we “(2,23 afﬂe wk4k%\ . 1‘" KA) For F:)“°| E38, ,dz5xl0-6m, (1 :me'sm .\ %.= 2171, wk (As) =§31xV57= mm. m) T “r T For“ Rr—S‘xxo‘ m) i.“ 5—3;, m‘R‘Uo): 377x3 536051- T '\ a.» Lo. -awe ' " 3* aw» e-mmww — , It 35 N3" «133 -\o m Wag Leerﬁm -\\_\< «K PW““*‘3\) OM' MW) ‘ﬂWﬁ %\ow\~8’ aw \b’03.b.Q‘ 1’15ka 034*: MM 7' Rdw‘ ﬁat “' VTX‘on‘bS'i-VD‘E ", kt: WEXMcss) - Rinvxu- Rm , 3W. b3.0\m.t; \‘o‘z‘m ,fé. 27.30be 3,4“ . «same. 03‘:- d‘xekbé'kﬁ; , so ﬂair &; 1.2 (90 MQh) 9- L . »B —4 Ram." sat “Jr-Lbﬁz—k “3‘1 9.4, m0 ILA“ o_ a9 Ito 60_ Yo. wo- \ao,mo ~ . ‘ ZOLQ ' - .50 Mamieh Ks M ”1% {-‘med W’Iwum Ag \w Q-ﬁmvx) rah-Emu ‘mzose‘a "5‘9““; 90" ‘23 > 5.0- ohms Kabuﬂ N“- : - V0}, 30‘... Nix _ (:12 * .132. . % W‘ V» ' Eon. . . ' Mk": vﬂz. , ‘ . ‘ @232 (—v—W *V-re n+1» ' v . ¢ _ 2 ~91. , - _, ,- P =. 2‘13; =, a, ‘_2:E =;_;% => —% = u+p>_—‘p:_% = (”rm-1°)?- "-1" Rh- 2'0 + l 3L4’ 5- ' 5.5b; Timg +0 PYOvakQ 900 M‘ °_____________o_______________ k\?‘ &= \O-iAwn‘W. ohm)“ W 50 reﬁm‘h'on cums og'kr Lyn». V; EL'10 3 Engii.‘ ‘ :9- 3V3 V+ 1‘32. gag“ \so \Ou} 2::_\’5 ’I+-!i=‘29-=aﬁ 1+ 3“ Sb ”75:0 \QOm ZOOM 260m 0‘ng «(4066mm 30 \$th oer L: \-'5}xsn’¢.-\'o right Wn- V+T+=tcoxa=aoovo bu}? 10m 20%: ‘292 wt: v_x_= \$3 @3393 w 3 ‘ Wag. Nix-)1: vé‘lw" 233x 109 K443: 2129. u) so We. we. a power ...
View Full Document

• Fall '08
• Staff

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern