Project22-Thersholding

Project22-Thersholding - of the pixels in the patch(c...

This preview shows pages 1–2. Sign up to view the full content.

EE 421 Digital Image Processing Mini Project 2 – December 1, 2010 Global Thresholding (a) Write a global thresholding program in which the threshold is estimated automatically using the procedure discussed in Section 10.3.3. The output of your program should be a segmented (binary) image. (b) Download Fig. 10.27(a) and segment the object using your thresholding program. Optimum Thresholding (a) Implement the optimum thresholding approach discussed in Section 10.3-5. Assume Gaussian densities in which the variances of the objects and background are the same. In addition to an image, the inputs to your program are as shown in Eq. (10.3-14). (b) Write a program that, given an image patch, computes the mean and variance

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: of the pixels in the patch. (c) Download Fig. 10.27(a) and select a small patch in the region of the object and also of the background to estimate the mean and variance of each. Compute the value of a single variance by averaging the two variances just obtained. Obtain the probabilities P 1 and P 2 by estimating (manually) the relative areas occupied by the object and background. Input the parameters thus obtained into your program and segment Fig. 10.27(a). Compare the results from global and optimum thresholdings. Figure 10.27 (a) Figure 10.29 (a)...
View Full Document

This note was uploaded on 12/12/2010 for the course ELECTRONIC EE 421 taught by Professor Hakantora during the Spring '10 term at Ankara Üniversitesi.

Page1 / 2

Project22-Thersholding - of the pixels in the patch(c...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online