L7_10 - 1/34 ESI 6314 Deterministic Methods in Operations Research Lecture Notes 8 University of Florida Department of Industrial and Systems

Info iconThis preview shows pages 1–9. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1/34 ESI 6314 Deterministic Methods in Operations Research Lecture Notes 8 University of Florida Department of Industrial and Systems Engineering / REEF 2/34 Duality theory max z = 5 x 1 + 5 x 2 + 3 x 3 s . t . x 1 + 3 x 2 + x 3 ≤ 3 x 1 + 3 x 3 ≤ 2 2 x 1- x 2 + 2 x 3 ≤ 4 2 x 1 + 3 x 2- x 3 ≤ 2 x 1 , x 2 , x 3 ≥ How can we derive an upper bound estimate for the optimal value z * of z ? For example, if we multiply the first constraint by 5, we have z = 5 x 1 + 5 x 2 + 3 x 3 ≤ 5 x 1 + 15 x 2 + 5 x 3 ≤ 15 for any x 1 , x 2 , x 3 ≥ 0. So, z * ≤ 15. 3/34 Duality theory More generally, to get an upper bound on z , we can multiply the i-th constraint by y i ≥ 0 and then add the resulting inequalities together: max z = 5 x 1 + 5 x 2 + 3 x 3 x 1 + 3 x 2 + x 3 ≤ 3 × y 1 x 1 + 3 x 3 ≤ 2 × y 2 2 x 1- x 2 + 2 x 3 ≤ 4 × y 3 2 x 1 + 3 x 2- x 3 ≤ 2 × y 4 We obtain: ( y 1 + y 2 + 2 y 3 + 2 y 4 ) x 1 +(3 y 1- y 3 + 3 y 4 ) x 2 +( y 1 + 3 y 2 + 2 y 3- y 4 ) x 3 ≤ 3 y 1 + 2 y 2 + 4 y 3 + 2 y 4 4/34 Duality theory We have z = 5 x 1 + 5 x 2 + 3 x 3 and ( y 1 + y 2 + 2 y 3 + 2 y 4 ) x 1 +(3 y 1- y 3 + 3 y 4 ) x 2 +( y 1 + 3 y 2 + 2 y 3- y 4 ) x 3 ≤ 3 y 1 + 2 y 2 + 4 y 3 + 2 y 4 If we make sure that y 1 + y 2 + 2 y 3 + 2 y 4 ≥ 5 3 y 1- y 3 + 3 y 4 ≥ 5 y 1 + 3 y 2 + 2 y 3- y 4 ≥ 3 then z = 5 x 1 + 5 x 2 + 3 x 3 ≤ 3 y 1 + 2 y 2 + 4 y 3 + 2 y 4 5/34 Duality theory In order to have as tight upper bound on z as possible, we want to minimize 3 y 1 + 2 y 2 + 4 y 3 + 2 y 4 . We obtain the dual LP : min w = 3 y 1 + 2 y 2 + 4 y 3 + 2 y 4 s . t . y 1 + y 2 + 2 y 3 + 2 y 4 ≥ 5 3 y 1- y 3 + 3 y 4 ≥ 5 y 1 + 3 y 2 + 2 y 3- y 4 ≥ 3 y 1 , y 2 , y 3 , y 4 ≥ The original LP is called the primal LP 6/34 Duality theory Primal LP: max z = 5 x 1 + 5 x 2 + 3 x 3 s . t . x 1 + 3 x 2 + x 3 ≤ 3 x 1 + 3 x 3 ≤ 2 2 x 1- x 2 + 2 x 3 ≤ 4 2 x 1 + 3 x 2- x 3 ≤ 2 x 1 , x 2 , x 3 ≥ Dual LP: min w = 3 y 1 + 2 y 2 + 4 y 3 + 2 y 4 s . t . y 1 + y 2 + 2 y 3 + 2 y 4 ≥ 5 3 y 1- y 3 + 3 y 4 ≥ 5 y 1 + 3 y 2 + 2 y 3- y 4 ≥ 3 y 1 , y 2 , y 3 , y 4 ≥ 7/34 Duality theory In general, if the primal LP is max z = n ∑ j =1 c j x j s . t . n ∑ j =1 a ij x j ≤ b i , i = 1 , . . . , m x 1 , . . . , x n ≥ then the dual LP is given by min w = m ∑ i =1 b i y i s . t . m ∑ i =1 a ij y i ≥ c j , j = 1 , . . . , n y 1 , . . . , y m ≥ x j are called primal variables y i are called dual variables 8/34 Duality theory z = n X j =1 c j x j ≤ n X j =1 m X i =1 a ij y i ! x j = m X i =1 n X j =1 a ij x j y i ≤ m X i =1 b i y i = w Hence, for any feasible solution x to the primal LP and any feasible solution y to the dual LP we have z = n X j =1 c j x j ≤ m X i =1 b i y i = w [ weak duality ] Therefore, if we find x * (feasible for the primal LP) and y * (feasible for the dual LP) such that n X j =1 c j x * j = m X i =1 b i y * i then x * is an optimal solution of the primal problem and y * is an optimal solution of the dual problem! 9/34...
View Full Document

This note was uploaded on 12/14/2010 for the course ESI 6314 taught by Professor Vladimirlboginski during the Fall '09 term at University of Florida.

Page1 / 34

L7_10 - 1/34 ESI 6314 Deterministic Methods in Operations Research Lecture Notes 8 University of Florida Department of Industrial and Systems

This preview shows document pages 1 - 9. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online