{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

formula_sheet-final-w09

# formula_sheet-final-w09 - STAT 2607 Formulae Simple Linear...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: STAT 2607: Formulae Simple Linear Regression ∑ n i =1 ( X i- ¯ X )( Y i- ¯ Y ) = ∑ n i =1 X i Y i- ∑ n i =1 X i ∑ n i =1 Y i n b = ¯ Y- b 1 ¯ X TSS = ∑ n i =1 ( Y i- ¯ Y ) 2 = ∑ n i =1 Y 2 i- ( ∑ n i =1 Y i ) 2 n b 1 = ∑ n i =1 X i Y i- ∑ n i =1 X i ∑ n i =1 Y i n ∑ n i =1 X 2 i- ( ∑ n i =1 X i ) 2 n SSR = &#20; ∑ n i =1 X i Y i- ∑ n i =1 X i ∑ n i =1 Y i n &#21; 2 ∑ n i =1 X 2 i- ( ∑ n i =1 X i ) 2 n = b 2 1 • ∑ n i =1 X 2 i- ( ∑ n i =1 X i ) 2 n ‚ TSS = SSR + SSE A test statistics for H : β 1 = c t n- 2 = b 1- c q MSE ∑ n i =1 ( X i- ¯ X ) 2 100(1- α )% C.I. for β 1 : b 1 ± t n- 2 , α 2 s MSE ∑ n i =1 ( X i- ¯ X ) 2 100(1- α )% C.I. for E [ Y | X ] when X = X p : ˆ Y p ± t n- 2 , α 2 s MSE • 1 n + ( X p- ¯ X ) 2 ∑ n i =1 ( X i- ¯ X ) 2 ‚ 100(1- α )% C.I. for an individual Y p when X = X p : ˆ Y p ± t n- 2 , α 2 s MSE • 1 + 1 n + ( X p- ¯ X ) 2 ∑ n i =1 ( X i- ¯ X ) 2 ‚ Coefficient of correlation between...
View Full Document

{[ snackBarMessage ]}

### Page1 / 2

formula_sheet-final-w09 - STAT 2607 Formulae Simple Linear...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online