p0404 - 198 CHAPTER 4. WORK AND ENERGY 4.4 Chapter 4,...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 198 CHAPTER 4. WORK AND ENERGY 4.4 Chapter 4, Problem 4 Problem: A ball of mass m rests against the bearing plate of mass mp in a child’s spring gun. The bearing plate is attached to a spring of constant k that is initially compressed through a distance ξ . The spring is unstretched when x = 0. Friction effects are negligible. The speed of the ball as it exits the gun, V , is 80% of the value it would achieve if the bearing plate’s mass were negligible. Determine the mass of the bearing plate. ......... ................................................................................................................................................................................................................... . . ..... . . . . . . . . . . . ........... . . . . . . .. . . . . .. . . . . .... . .. .......... .... ..... ...... ... ... ... .. . ..... .. .. . . . . . . ......................... . . . . . . .... . . . . .............................................................................................................................................. .............................................................................................................................................................................................. . ........................................................................................................................................................................................................................................................ . .. . . ... . .. .. .. .. .. .. .. .. .. .. . ..................................................................................................................................................................................................................................................... . . .................. . . . . . . . . . . . . ..... . . . . ... . . . . ......... ..................... .......................... . . . . . . . . . . . . . . . .. ... . . ..... ............................ .. .. .. .. .. .. .. .. . . . . . . . .. .. . ...................................... .. .... ..... . . ....... . . . . .......................................................................... .. .. . . . . . .. .................................................................................................................................................................. .. . ............. . . . .. . . . ......................... .. .. .. ...... ....................................... . ...... ................................... .. ...... ............................... . . ......................... .. .. .. .. ...... ......................................... . . .. . ... . .. .. . .. . ........................ . . .. .. . . ..................................................... . . .. . . ......................... . . . . .. . .. . .. .................................................... . ................................................... ......................... . .. .. .... . . . ........................ .. .. . . ............................. . . . . . . ............. . ............................................................................ . . . . ............................. .. .. .. .. .. .. .................................................................................. . .. . .. . .. .. . . .. .. . ....................................................... . . .. .. .. .. . ........................ . .... ...................................................... .. .. .. . .. . . ......................... ..................................................... .. .. .. ........................ . ................................................... ......................... . .. .. .. .. . ......................... .. .. .. .. . ................... .... .................................................. . ......................... .. .. .. .................................... ... . . .. . . . . .. ...... . ... . .................... . . . . . . .. . ........................ ...... ............................................... . . . . ...... ........................ . ...................... ......................... . . .. . . . . . . . . . . . . . . . . . . . . . . . ..... . . ......... ... . . . . . ............................. . . . . . . . . . . . . . . . . . . . . . . ........ . ...................... . . . . .. .... . . ........... .. . . .............................................................................................................................................................................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . . .... . . . . . . . . . . . . ................................................................................................................................................................................................................................................................................................ .. . . . ................................................................................................................................................................................................................. . ... .. . . ............................................................................................................................................................................................................................................................................................................................................................................ ................ ................................................. ............................................................................ ......................................................................................................................................................................................... . . ... . . . . . . . . . . . . . . . . . . . . . . . ... . . . . ... . . . . . ........................................................................................................................................................................................... . . ............. . .............. . . . . . . . . ............... . ................. . ................. ................ . . .. .. .. .. . • k • m v ξ x Solution: We can solve using the Principle of Work and Energy. Since the only force acting is the spring force, F = −kx, we have 0 U1−2 = − −ξ kx dx = − 12 kx 2 x=0 = x=−ξ 12 kξ 2 Before the spring is released, the kinetic energy is zero. When the ball reaches x = 0, the kinetic energy is the combined energy of both the bearing plate and the ball. Thus, T1 = 0, T2 = 1 (m + mp ) V 2 2 The Principle of Work and Energy tells us that U1−2 = T2 − T1 , wherefore 1 1 (m + mp ) V 2 = k ξ 2 2 2 Solving for V yields V =ξ k m + mp If the mass of the bearing plate were negligible, this equation would simplify to Vo = ξ We are given V = 4 Vo , which tells us that 5 m 4 = m + mp 5 Solving for mp , we conclude that mp = 9 m 16 =⇒ m= 16 (m + mp ) 25 k m ...
View Full Document

This note was uploaded on 12/16/2010 for the course AME 301 taught by Professor Shiflett during the Fall '06 term at USC.

Ask a homework question - tutors are online