p0419 - 4.19. CHAPTER 4, PROBLEM 19 223 4.19 Chapter 4,...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 4.19. CHAPTER 4, PROBLEM 19 223 4.19 Chapter 4, Problem 19 Problem: A vehicle is in a circular orbit of radius rA about the moon. To transfer to an orbit of larger radius rB , the vehicle is first placed on a Hohmann transfer orbit from Point A to Point B by firing its rocket momentarily at Point A and then again at Point B. Determine the changes in velocity, ∆vA and ∆vB , as functions of rA , rB , the mass of the moon, M , and the Universal Constant of Gravitation, G. Compute ∆vA and ∆vB for rA = 1200 mi, rB = 1800 mi, and M = 5.04 zettaslugs. .............. ................... ....... .... ..... .... .... ... .... ... . .. ... ... ... ... ................... . ... ... ........................ ... .. . ... ... .. ........ . . .................. ........ .................. .. .. . .. . .. . . . . .................. .. . ..... .. ................................... ...... ... . ......... .. ... .. .... .................................................. .. ............... . .. .. . ........................... . .... ... .......................................................... ... ..... . .. .. ................................................................... ... . .. .. . . .. .. .. .. . ................................................................... .. .. . . ................................................................................ ................................................................... .. . . . . . . . . ....... . . . . . . . . . . . . . . . . ... . . .. .. ................................................................................................................ .. . ............................................................ . . . . ... . . . ................................................................................. . . . . .................................................................................. . . .. . . . ................................................................................... . . . . .................................................................................... . .. . . . .............................................................................................................................. . . . . ................................................................................. . . . .................................................................................... . . . . . ..................................................................................... . . ... ......................................... . . .. . .................................................................................... . . . . . . .................................................................................... . . . . . ................................................................................. . . . . ................................................................................ . . . . .................................................................................. . . . ..... . . . . .............................................................................. . . . . . ............................................................................. . . . . ........................................................................... . . . .. .......................................................................... . . . .. ....................................................................... . . . ..... . . . .. .................................................................... ................................................................. .. . . .. ................................. . .. .. .... ... ....................................................... .. . ... .................................................... .. .. .. ... ........................................ ... . . ......... . ... ... ............................... ..... .. .. .............................. ... . ...... ......... ....... .. .. .. ........... .......... .. .. ... ... .. ... ... ... ... ... . ... ... .... ... ... .... ..... .... ........... ............ ................... . ...... . . .. B• Moon •A Solution: After the rocket has finished firing, denote the vehicle’s velocity at Point A by vA . Similarly, ˜ denote the vehicle’s velocity prior to firing the rocket by vB . Since angular momentum is conserved on the ˜ transfer orbit, we know that ˜ ˜ Ho = mrA vA = mrB vB Therefore, the velocities are related by vA = ˜ Because total energy is also conserved, we have 1 GM m 1 GM m = mvA − mvB − ˜2 ˜2 2 rB 2 rA Substituting for vA , this equation simplifies as follows. ˜ 1 GM m 1 =m mvB − ˜2 2 rB 2 rB rA 2 rB vB ˜ rA vB − ˜2 GM m rA =⇒ 1 r2 m 1− B 2 2 rA vB = ˜2 GM m rB 1− rB rA Dividing through by 1 m(1 − rB /rA ), we have 2 1+ rB rA vB = ˜2 2GM rB =⇒ vB = ˜2 2GM rA rB rB + rB Therefore, the velocities at Points A and B on the transfer orbit are vB = ˜ 2GM rA rB (rA + rB ) and vA = ˜ 2GM rB rA (rA + rB ) Since the vehicle is initially on a circular orbit of radius rA , its velocity at Point A prior to firing its rocket is GM vA = rA 224 CHAPTER 4. WORK AND ENERGY Similarly, after firing its rocket at Point B, its velocity on the circular orbit of radius rB is vB = GM rB Now, the changes in velocity at Points A and B are given by vA = vA + ∆vA ˜ From the results developed above, ∆vA is ∆vA = Similarly, ∆vB is ∆vB = GM − rB 2GM rA = rB (rA + rB ) GM 1− rB 2rB rA + rB 2GM rB − rA (rA + rB ) GM = rA GM rA 2rB −1 rA + rB and vB = vB + ∆vB ˜ We are given rA = 1200 mi, rB = 1800 mi, and M = 5.04 zettaslugs. Thus, noting that a zettaslug is 1021 slugs, ft3 ft3 5.04 · 1021 slug = 1.734 · 1014 GM = 3.44 · 10−8 slug · sec2 sec2 Therefore, the given data yield √ ft3/2 GM = 1.317 · 107 , sec Using these values, we have 2rB 6 = rA + rB 5 Therefore, ∆vA ∆vB = = 1.317 · 107 ft3/2 /sec √ 6.336 · 106 ft 1.317 · 107 ft3/2 /sec √ 9.504 · 106 ft 6 −1 5 1− 4 5 = 499 = 451 ft sec ft sec and 4 2rA = rA + rB 5 rA = 6.336 · 106 ft, rB = 9.504 · 106 ft ...
View Full Document

This note was uploaded on 12/16/2010 for the course AME 301 at USC.

Ask a homework question - tutors are online