p0506

# p0506 - 234 CHAPTER 5. IMPULSE AND MOMENTUM 5.6 Chapter 5,...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 234 CHAPTER 5. IMPULSE AND MOMENTUM 5.6 Chapter 5, Problem 6 Problem: Two balls of mass m1 = 4m and m2 = 3m and coefficient of restitution e approach each other with velocities v1 = V i and v2 = − 4 V i. Determine their velocities after the impact, v1 and v2 , 3 in terms of V and e. Compute the velocities for a perfectly-plastic impact, a perfectly-elastic impact, and an impact with e = 1 . 2 ...... ..... .. ..... ................. .......................... ... . ................................. ................................... ....................................... 1 .......................................... ......................................... . ....................................... ........................................... . . . .. ...................................................................................... . ................................................................................... .. . . 1 ... ........................................... ... .......................................... ......................................... .................................... .................................. .... .............................. ........................... .. ........... ...... .. ... m v ...... ........... ................... .......................... ............................... .. . .................................... ...................................... 2 .. ......................................... .......................................... .. ........................................... . . . . .............................................................2.................... .... ................................................................................. .. . . ... . . . . . . . . ............................................. .......................................... ...................................... .. ................................... ...................................... . .. .. .............................. ............................. .......................... .. .. ............. ...... ... v m Solution: This is a direct central impact with the line of impact for the balls being the x axis. Momentum Conservation. Using the fact that the initial velocity components for Balls 1 and 2 are v1 = V and v2 = − 4 V , while m1 = 4m and m2 = 3m, momentum conservation along the line of impact tells us 3 that 4 4mV − 3m V = 4mv1 + 3mv2 3 Dividing through by m yields 4v1 + 3v2 = 0 Impact Relation. For a coefficient of restitution equal to e, we have 7 eV 3 To complete the solution, we solve for v2 in terms of v1 from the impact relation, which yields v2 − v1 = e (v1 − v2 ) = 7 v2 = v1 + eV 3 Substituting for v2 in the momentum equation tells us that 7 4v1 + 3 v1 + eV 3 Again using the impact relation, we have 7 v2 = −eV + eV 3 Therefore, the velocity vectors after the impact are v1 =⇒ v2 = 4 eV 3 =0 =⇒ v1 = −eV = −eV i 4 v2 = eV i 3 For a perfectly-plastic impact, we know that e = 0, while e = 1 for a perfectly-elastic impact. Thus, we have the following velocities for e = 0, e = 1 and e = 1 . 2 v1 = 0 and v2 = 0, Perfectly-plastic impact Perfectly-elastic impact Impact with e = 1 2 4 V i, 3 1 2 v1 = − V i and v2 = V i, 2 3 v1 = − V i and v2 = ...
View Full Document

## This note was uploaded on 12/16/2010 for the course AME 301 at USC.

Ask a homework question - tutors are online