p0908 -

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 9.8. CHAPTER 9, PROBLEM 8 355 9.8 Chapter 9, Problem 8 Problem: The motion of a small cart of mass m is governed by two springs, a dashpot and an oscillating attachment, which moves horizontally with a displacement given by xA = a cos ω t. The length a is the magnitude of the oscillation and ω is frequency. Ignore effects of rolling friction on the cart’s motion. (a) Derive the differential equation governing the cart’s motion. HINT: Check that your equation makes sense for the limiting case k1 = k2 and the attachment not moving. (b) Determine the natural frequency of the system. (c) Determine the critical damping coefficient for the system. ............ ............................................................. ............ ............................................................. ............ ............................................................. ............ ............................................................. ............ ............................................................. ............ ............................................................. ............ ............................................................. ............ ............................................................. ............ ............ ............................................................. ............ ............................................................. ............ ............................................................. ............ ............................................................. ............ ............................................................. ............ ............................................................. . ............................................................. ............ ............................................................. ............................................................. ............ ............................................................. ............ ............................................................. ............ ............................................................. ............ ............................................................. ............ ............................................................. ............ ............................................................. ............ ............ ............ ............ ............ ............ ............ ............ ............ ............ ............ ............ ............ ............................................................. ............ ............................................................. ............ ............................................................. 2 ............ ............................................................. ............ ............................................................. ............ ............................................................. ............ ............................................................. ............ ............................................................. ............ ............................................................. ............ ............................................................. ............ ............................................................. ............................................................. ............ • ............... ... ... ... ... ... ... ... ... ...1... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...•. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ................................................................ ............ ... ... ... ... . ... .... .... .... .... .... .... .... . .... .... .... .... .... .... .... .... ............................................................. ................................................................................ ....................................................................................................................................................................................................................................................................................................................................... .......................................................................................................................................................................................................................................................................................................................................................................................................................................................... ................ ............ ............ ............ ............ ............ . ......... . ......... . ......... . ......... . ......... . ......... . ......... . ......... . ......... . ......... . ......... . ......... . ......... . ......... . ........ . . . . . . . . . . . . .... ... ... ....... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .................................................................................................................................................................................................................................................................................................................................................................................................... .................................................................................................................................................................................................................................................................................................................................................................................................... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. x • • c • • m • k • xA = a cos ω t k f f So ut on: (a) The forces ac ng on he car are as shown n he fo ow ng f gure C ear y for mo on n he pos ve x d rec on bo h spr ng forces (re a ve o a d sp acemen x) and he dashpo force are d rec ed n he nega ve x d rec on The a achmen ’s mo on adds a force n he pos ve x d rec on for pos ve xA cx • • x m • • k2 (xA − xo ) k2 (x − xo ) k1 x The bas c equa on of mo on for h s sys em s mx = −cx − k1 x − k2 (x − xo ) + k2 (xA − xo ) ¨ where xo s he equ br um d sp acemen of Spr ng 2 Th s equa on can be rearranged o read mx + cx + (k1 + k2 )x = k2 xA ¨ F na y us ng he fac ha he d sp acemen of he a achmen s xA = a cos ω t he d fferen a equa on govern ng he car ’s mo on s mx + cx + (k1 + k2 )x = k2 a cos ω t ¨ In m ng case xA = 0 and k1 = k2 = k he equa on of mo on wou d s mp fy o mx + cx + 2kx = 0 ¨ Th s s phys ca y correc s nce we expec o have he spr ngs n ser es for h s m ng case (b) By nspec on he na ura frequency of h s sys em s g ven by 2 ωn = k1 + k2 m =⇒ ωn = k1 + k2 m 356 CHAPTER 9. MECHANICAL VIBRATIONS (c) By definition, the critical damping coefficient is given by cc = 2mωn . Thus, using the value of ωn determined in Part (b), we find cc = 2m k1 + k2 = 2 m(k1 + k2 ) m ...
View Full Document

This note was uploaded on 12/16/2010 for the course AME 301 at USC.

Ask a homework question - tutors are online