prcreca5

Prcreca5

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: A.6 Polynomial Division; Synthetic Division Find the quotient and remainder when 2 x − 8 x + x − 4 is divided by 2 x − 1 Divisor 3 2 2 2 x − 1 2 x − 8x + x − 4 Dividend 2 3 2 x 2 3 2 2 x − 1 2 x − 8x + x − 4 x 2 3 2 2 x − 1 2 x − 8x + x − 4 2x 3 −x x 2 3 2 2 x − 1 2 x − 8x + x − 4 2x 3 2 −x − 8x + 2 x x −4 2 3 2 2 x − 1 2 x − 8x + x − 4 2x 3 2 −x − 8x + 2 x − 8x 2 +4 Divisor x −4 2 3 2 2 x − 1 2 x − 8x + x − 4 2x 3 2 Quotient −x − 8x + 2 x − 8x 2 Dividend +4 2x − 8 Remainder Check: 2 2 x - 1 (x - 4) + (2 x - 8) ( ) = 2 x − 8x − x + 4 + 2 x − 8 3 2 = 2 x − 8x + x − 4 Thus, 3 2 2 x − 8x + x − 4 2x − 8 = x−4+ 2 2 2x − 1 2x − 1 3 2 Synthetic Division is a process whereby the quotient and remainder can be determined when a polynomial function f is divided by g(x) = x - c. Use synthetic division to find the quotient and remainder when x + 3 = x - (-3) f(-3) = 278...
View Full Document

This note was uploaded on 12/17/2010 for the course MATH 131 taught by Professor Staff during the Fall '08 term at UNC.

Ask a homework question - tutors are online