{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Chapter1.Appendix.Dirac.Delta

# Chapter1.Appendix.Dirac.Delta - IV-30 The Dirac Delta...

This preview shows pages 1–2. Sign up to view the full content.

IV-30 Dirac Delta Function In one dimension, į (x-x o ) is defined to be such that: + * 0 i f x o is not in [a,b]. ± a to b f(x) į (x-x o )dx ± * ½f(x o ) if x o = a or b; * f(x o ) if x o İ (a,b). . The Dirac Delta Function, į (x-x o ) Properties of į (x-x o ): (you should know those marked with * ) * 1. į (x-x o ) = 0 if x ± x o * 2. ± - ± to + ± į (x)dx = 1 3. į (ax) = į (x)/|a| * 4. į (-x) = į (x) 5. į (x²-a²) = [ į (x-a) + į (x+a)]/(2a); a ² 0 6. ± - ± to + ± į (x-a) į (x-b)dx = į (a-b) + ------------------------------------------------------------------------------------------------------------------------------------------ - * * 7. į (g(x)) = ³ i į (x-x oi )/|dg/dx| x=xoi where g(x oi ) = 0 and dg/dx exists at and in a region around x oi . . ------------------------------------------------------------------------------------------------------------------------------------------ - * 8. f(x) į (x-a) = f(a) į (x-a) 9. į (x) is a "symbolic" function which provides convenient notation for many mathematical expressions. Often one "uses" į (x) in expressions which are not integrated over. However, it is understood that eventually these expressions will be integrated over so that the definition of į (box above) applies. 10. No ordinary function having exactly the properties of į (x) exists. However, one can approximate į (x) by the limit of a sequence of (non-unique) functions, į n (x).

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 3

Chapter1.Appendix.Dirac.Delta - IV-30 The Dirac Delta...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online