Chapter3.tables

# Chapter3.tables - Page 61 Solutions to Laplace’s...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Page 61 Solutions to Laplace’s equation: (x,y,z), (r,S, jÞ, Ý_, j, zÞ; Helmholtz equation in (r,S, jÞ Equation 4 2 ®Ýx, y, zÞ = 0 separation. const. ! ! k=k 1 x +k 2 ŷ +k 3 z General solution: sum over all sep. constants # # conditions # # F k6k =0 ßcÝkÞe k 6 r + dÝkÞe k 6 r ÝÝax +bÞN k1,0 + Ýcy +dÞN k2,0 k 6 k = 0, k can be complex + Ýez + fÞN k3,0 Þ + Ýax +bÞÝcy +dÞÝez +fÞN |k|,0 à 4 2 ®Ýr, S, jÞ = 0 4 2 ®Ý_, j, zÞ = 0 |m|² § = 0, 1, 2... J, m= 0, ±1, ±2, ... F §,m ßa § r § + b § r ?§?1 àßc §,m Y §,m ÝS, jÞ + d §,m Q §,m ÝS, jÞà F J,m ßa Jm J m ÝJ_Þ + b Jm N m ÝJ_Þàe imj e ±Jz Q §,m ¸ K, cos S = ?1 N m ¸ K, _ ¸ 0; J can be complex Ý4 2 + k 2 Þ®Ýr, S, jÞ = 0 |m|² § = 0, 1, 2... F §,m ßa § j § ÝkrÞ + b § n § ÝkrÞàßc §,m Y §,m ÝS, jÞ + d §,m Q §,m ÝS, jÞà n § ¸ K, r ¸ 0; Function e ## k6r separation consts k 3 =± i|k 3 |; k 1,2 real e Ýk 1 x+k 2 yÞ e ± i |k 3 |z ===>sin, cos in one variable, exponential in other two Ý§ ? mÞ! 1/2 |m| (-1) m ß 2§ + 1 à P § Ýcos SÞ e imj ; XX Y §,m D Y § v ,m v dI = N §,§ v N m,m v 4^ Ý§ + mÞ! K J_ 2j+m Ý?1Þ j Fj ß à ; X a_ J m Ýa_ÞJ m Ýb_Þd_ = NÝa ? bÞ where J m ÝaÞ = J m ÝbÞ =0 0 j !Ý m + j Þ ! 2 ÝkrÞ § j § ÝkrÞ = ß ^ à 1/2 J §+1/2 ÝkrÞ; j 0 ÝxÞ = sin x ; j § ÝkrÞ k_¸K ¸ x 2kr Ý2§ + 1Þ!! ; k 6 k = 0 k 1,2 =± i|k 1,2 |; k 3 real e iÝ|k 1 |x+|k 2 |yÞ e ±k 3 z ===>sin, cos in two variables ,exponential in third Y §,m ÝS, jÞ J m ÝJ_Þ j § ÝkrÞ; n § ÝkrÞ |m|² § = 0, 1, 2... J, m= 0, ±1, ±2, ... § = 0, 1, 2... The boundary conditions:the boundary conditions on the solution restrict the separation constants to specific values. Uniqueness: solutions to4 2 ® = 0 in a finite volume, satisfying the same boundary conditions, are unique. ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online