final_cover.sheet.F08

# final_cover.sheet.F08 - Physics 423 Final course ave course...

This preview shows pages 1–3. Sign up to view the full content.

Physics 423 Final Name __________________ cover p _ 1 .................... 1. ________ (60 points) course ave ______ 2. ________ (40 points) course grade ______ . ________________ total . ________ ( / 150 points) __________________________________________________________________________________ D ( r , t ) = 4 k 1 o 0 ( r , t ) D ( r )= E ( r ) [ D 1 ( r , t ) − D 2 ( r , t )] n = ( r , t ) B ( r , t ) = 0 [ B 1 ( r , t ) − B 2 ( r , t n = 0 ∇× E ( r , t )=− k 3 B ( r , t ) t n ×( E 1 ( r , t ) − E 2 ( r , t )) = 0 H ( r , t ) = k 2 k 1 o o D ( r , t ) t + 4 k 2 o J 0 ( r , t ) n × ( H 1 ( r , t ) − H 2 ( r , t = ( r , t ) J ( r , t ) + ( r , t ) t = 0; F = q [ E + k 3 v × B ] ; ( r ) = 1 4  o ∫∫∫ V ( r ) | r r | d 3 x + o ( g ( x = i i ( x x i ) | dg dx | x = x i k k ( ) = 1 ( 2 ) 4 ∫∫∫∫ all space, time e i [ r k k −( ) t ] d 3 rdt df = d r f ( r ) D ( r )= E ( r ) . contains r f ( r ) ( 3 ) ( r r ) dx dy dz = f ( r ) system k 1 k 2 k 3 qB esu (Electrostatic) 1 1 c 2 1 1 statcoul. emu (Electromag.) c 2 1 1 1 statcoul. Gaussian 1 1 c 2 c 1 c statcoul. gauss (G) Heaviside-Lorentz 1 4 1 4 c 2 c 1 c statcoul SI (MKSA) 1 4  o o 4 1 1 Coulomb (C) tesla SI (MKSA) 10 7 c 2 10 7 11 quantity Ampere dq dt Coul . s 1 V / ohm = V / o = 10 7 4 c 2 8.854 187 10 12 Farad / m( S I ) o = 4 10 7 1.256 637 10 6 Henry / m o o 376.730 ohms ( ) 376.730 10 5 / c 2 1.0546 10 34 Js 6.582 10 16 eVs e 1.602 10 19 Coulomb 4.80 10 16 statcoul ( esu , Gaussian ) e 2 4  oc ( SI )= 1 137.04 e 2 c ( esu , Gaussian ) Bohr radius, r H 0.529177 Å 0.529177 10 10 m e 2 4  o ( 2 r H ) ( SI 13.605 eV e 2 2 r H ( esu , Gaussian ) ........................................................................................................................................................ cover p _ 2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
D ( r ) = 1 4 ∫∫∫ 0 ( r )( r r ) | r r | 3 d 3 r + D 0 ( r ) , SI units D 0 ( r ) = 0 ( r ) = 1 4  ∫∫ surface ( r ) | r r | dS + 0 . SI units ( r )= ( r ) ( F ( r ))|∇ F ( r )| n ( r ) ( 1 E 1 ( r ) − 2 E 2 ( r ))= ( r ) ; 0 2 | z | = ( x , y , z ) E ( z )= n ̂ 0 2 n ( r ) ( 1 E 1 ( r ) − 2 E 2 ( r 0; 0 lim ( r , ) = d ( r ) ; + ( r ) − ( r )=− 1 d ( r ) ( r 1 d ( r ) ( r r ) | r r | 3 d S =− 1 d ( r ) d 2 ( r 1 . ( r ) ( r ) = 1 [− . ( r )] g ( r , r ) d 3 r 2 g ( r , r ) = ( 3 ) ( r r ) ; g ( r , r 0 ) = 1 4 | r r 0 | + F ( r , r 0 ) ( r o ) = volume g ( r , r o )[− . ( r )]/ d 3 r + bounding surface [ ( r )∇ g ( r , r o ) − g ( r , r o )∇ ( r )] n ̂ ( r ) dS D ( r 0 ) = 1 volume G D ( r , r 0 )[− . ( r )] d 3 r + bounding surface ( r s )∇ G D ( r s , r 0 ) d S 2 G N ( r , r 0 ) = ( 3 ) ( r r 0 ) ; bounding surface G N ( r , r 0 ) n ̂ ( r ) dS = 1 ( r 0 ) = 1 volume G N ( r , r 0 )[− . ( r )] d 3 r + avg + bounding surface G N ( r , r 0 )∇ ( r ) n ̂ ( r ) dS [∇ G N ( r , r 0 n ̂ ( r ) = F N ( r , r 0 )+∇ 1 4 | r r 0 | n ̂ ( r ) = 1 S tot L D ( r o ) = bounding surface ( r s ) L D G D ( r s , r 0 ) d S ; L N ( r bounding surface G N ( r s , r 0 )∇ L N ( r s ) d S S ( r , t ) = E ( r , t ) × H ( r , t ) ; W electron = e 2 / 2 aW i = 2 volume |∇ i ( r 2 d 3 r W ij = volume i ( r ) j ( r ) d 3 r , Q i = j = 1 N C ij V j C ii = Q i V i , V j = 0 W = 1 2 i = 1 N Q i V i = 1 2 i , j = 1 N C ij V i V j I [ , ] = F ( r , ( r ) , ( r )) d 3 r F  i = 1 3 x i F (∂ /∂ x i ) u
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 8

final_cover.sheet.F08 - Physics 423 Final course ave course...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online