wave.motion.ionic.2007

wave.motion.ionic.2007 - Wave motion in a medium This...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
ε Ionic wx () ε o 1 wx 2 ε o ε s 1 i γ wx wT + 1 wx 2 + := wx= w/wT ε Ionic wx ε o wT 2 w 2 ε o ε s 1 i γ w + wT w 2 + := γ 10 11 := wT 2.26 10 13 := ε s 4.90 2.34 := ε o 1 := IONIC CRYSTAL PERMITTIVITY 01 0 2 0 0 1 2 Eo wx wo , wx Eo wx wo , eo e wx wo 2 dw 2 := Eo(w,wo) represents the electric field magnitude as a function of frequencies peaked at wo. You can adjust wo. Im i 1 = Re i 0 = i 1 0.5 := wx 0.0001 0.001 , 20 .. := wo 1.5 := dw 0.5 := eo 1.0 := Let This program calculates the electric field in a material (ionic crystal or metallic plasma) as a function of position, z, and time, t. See Eq. 2.190 on page 46 of the notes. In this case we assume that the propagation vector, k, is along the z direction. E is thus perpendicular to k. page 1 Wave motion in a medium
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
page 2 Complex Index of Refraction : ε w () ε Ionic w := Rw Re ε w := Iw Im ε w := w 0.0001 0.001 , 5 .. := nw 2 0.5 2 2 + 0.5 + 1 2 := wT 2.26 10 13 × = kap w 2 0.5 2 2 + 0.5 + 1 2 Im ε w Im ε w := 012 200 100 0 100 200 Re ε w w
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 9

wave.motion.ionic.2007 - Wave motion in a medium This...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online